scholarly journals Wideband High Gain Active Feedback Transimpedance Amplifier

Author(s):  
Preeti Singh ◽  
Maneesha Gupta ◽  
Bhawna Aggarwal ◽  
Shireesh Kumar Rai
Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2680
Author(s):  
Anoir Bouchami ◽  
Mohannad Y. Elsayed ◽  
Frederic Nabki

This paper presents a microelectromechanical system (MEMS)-based oscillator based on a Lamé-mode capacitive micromachined resonator and a fully differential high-gain transimpedance amplifier (TIA). The proposed TIA is designed using TSMC 65 nm CMOS technology and consumes only 0.9 mA from a 1-V supply. The measured mid-band transimpedance gain is 98 dB Ω and the TIA features an adjustable bandwidth with a maximum bandwidth of 142 MHz for a parasitic capacitance C P of 4 pF. The measured input-referred current noise of the TIA at mid-band is below 15 pA/ Hz . The TIA is connected to a Lamé-mode resonator, and the oscillator performance in terms of phase noise and frequency stability is presented. The measured phase noise under vacuum is −120 dBc/Hz at a 1-kHz offset, while the phase noise floor reaches −127 dBc/Hz. The measured short-term stability of the MEMS-based oscillator is ±0.25 ppm.


Author(s):  
Alakhib Ibrahim Abdelbary ◽  
Abdelrahim Elobied Ahmed

In this work a simple double beam spectrophotometer detector for the nucleic acid detection has been designed. The developed system contains photodiodes as a sensor, logarithamatic transimpedance amplifier circuit and filter circuit.The developed prototype design accuracy is validated by running a RNA sample and the result shows that our simplified developed setup detects the present of RNA in the sample.


Author(s):  
Zhenghao Lu ◽  
Kiat Seng Yeo ◽  
Wei Meng Lim ◽  
Manh Anh Do ◽  
Chirn Chye Boon

2000 ◽  
Vol 35 (9) ◽  
pp. 1260-1265 ◽  
Author(s):  
J. Mullrich ◽  
H. Thurner ◽  
E. Mullner ◽  
J.F. Jensen ◽  
W.E. Stanchina ◽  
...  

2020 ◽  
Author(s):  
Stephen E. Cox ◽  
Sidney R. Hemming ◽  
Damian Tootell

Abstract. We installed the new Isotopx ATONA Faraday cup detector amplifiers on an Isotopx NGX mass spectrometer at Lamont-Doherty Earth Observatory in early 2018. The ATONA is a capacitive transimpedance amplifier, which differs from the traditional resistive transimpedance amplifier used on most Faraday detectors for mass spectrometry. Instead of a high gain resistor, a capacitor is used to accumulate and measure charge. The advantages of this architecture are a very low noise floor, rapid response time, stable baselines, and very high dynamic range. We show baseline noise measurements and measurements of argon from air and cocktail gas standards to demonstrate the capabilities of these amplifiers. The ATONA exhibits a noise floor better than a traditional 1013 Ω amplifier in normal noble gas mass spectrometer usage, superior gain and baseline stability, and an unrivaled dynamic range that makes it practical to measure beams ranging in size from below 10−16 A to above 10−9 A using a single amplifier.


Sign in / Sign up

Export Citation Format

Share Document