scholarly journals Mass Spectrometry Imaging and Integration with Other Imaging Modalities for Greater Molecular Understanding of Biological Tissues

2018 ◽  
Vol 20 (6) ◽  
pp. 888-901 ◽  
Author(s):  
Tiffany Porta Siegel ◽  
Gregory Hamm ◽  
Josephine Bunch ◽  
Jo Cappell ◽  
John S. Fletcher ◽  
...  
2020 ◽  
Author(s):  
lingpeng zhan ◽  
xi huang ◽  
jinjuan xue ◽  
huihui liu ◽  
caiqiao xiong ◽  
...  

Mass spectrometry imaging (MSI) has been increasingly utilized in investigating the locations of biomolecules within tissues. However, the isomeric compounds are rarely distinguished in the MS images, due to inability of MSI methods to differentiate isomers in the probing area. Coupling tandem mass spectrometry with MSI can facilitate differentiating isomeric compounds in ion images. Here we apply MALDI-TOF/TOF tandem mass spectrometry imaging approach to revealing the spatial distributions of isomeric disaccharides in plant tissues. First, the MS/MS imaging analysis of disaccharide-matrix droplet spots demonstrated the feasibility of distinguishing isomeric species in tissues, by measuring the relative intensity of specific fragments. Then, we conducted tandem MS imaging of disaccharides in onion bulb tissues, which indicated that sucrose and other unknown non-sucrose disaccharides exhibit heterogeneous locations throughout the tissues. This method enables us to image disaccharide isomers differentially in biological tissues, and to discover new saccharide species in plant. This work also emphasizes the necessity of considering isobaric compounds when interpreting MSI results.<br>


2019 ◽  
Vol 55 (4) ◽  
pp. e4443 ◽  
Author(s):  
Jarod A. Fincher ◽  
Andrew R. Korte ◽  
Jacqueline E. Dyer ◽  
Sridevi Yadavilli ◽  
Nicholas J. Morris ◽  
...  

Author(s):  
Daisy Unsihuay ◽  
Daniela Mesa Sanchez ◽  
Julia Laskin

Mass spectrometry imaging (MSI) is a powerful, label-free technique that provides detailed maps of hundreds of molecules in complex samples with high sensitivity and subcellular spatial resolution. Accurate quantification in MSI relies on a detailed understanding of matrix effects associated with the ionization process along with evaluation of the extraction efficiency and mass-dependent ion losses occurring in the analysis step. We present a critical summary of approaches developed for quantitative MSI of metabolites, lipids, and proteins in biological tissues and discuss their current and future applications. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 72 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Hirofumi Enomoto

ABSTRACT Desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) is a powerful tool to analyze the distribution of metabolites in biological tissues. Cryosectioning of biological tissues is usually required prior to DESI-MSI, but it can be difficult for tissues that are fragile, hard, and have a high-water content. The Kawamoto method uses transparent adhesive films to prepare cryosections; however, its application for plant tissues, such as strawberry tissues, in DESI-MSI has not been verified. In this study, strawberry cryosections maintained original structures were prepared using adhesive film. Subsequently, numerous peaks were detected for the sections using the positive and negative ion modes of DESI-MSI. Several primary and specialized metabolites, such as amino acids, sugars, organic acids, and flavonoids, were identified and visualized. These results suggest the use of adhesive films when cryosectioning could improve DESI-MSI analysis of the metabolites in strawberry fruits and various tissues of other plant species.


2020 ◽  
Author(s):  
lingpeng zhan ◽  
xi huang ◽  
jinjuan xue ◽  
huihui liu ◽  
caiqiao xiong ◽  
...  

Mass spectrometry imaging (MSI) has been increasingly utilized in investigating the locations of biomolecules within tissues. However, the isomeric compounds are rarely distinguished in the MS images, due to inability of MSI methods to differentiate isomers in the probing area. Coupling tandem mass spectrometry with MSI can facilitate differentiating isomeric compounds in ion images. Here we apply MALDI-TOF/TOF tandem mass spectrometry imaging approach to revealing the spatial distributions of isomeric disaccharides in plant tissues. First, the MS/MS imaging analysis of disaccharide-matrix droplet spots demonstrated the feasibility of distinguishing isomeric species in tissues, by measuring the relative intensity of specific fragments. Then, we conducted tandem MS imaging of disaccharides in onion bulb tissues, which indicated that sucrose and other unknown non-sucrose disaccharides exhibit heterogeneous locations throughout the tissues. This method enables us to image disaccharide isomers differentially in biological tissues, and to discover new saccharide species in plant. This work also emphasizes the necessity of considering isobaric compounds when interpreting MSI results.<br>


2020 ◽  
Author(s):  
lingpeng zhan ◽  
xi huang ◽  
jinjuan xue ◽  
huihui liu ◽  
caiqiao xiong ◽  
...  

Mass spectrometry imaging (MSI) has been increasingly utilized in investigating the locations of biomolecules within tissues. However, the isomeric compounds are rarely distinguished in the MS images, due to inability of MSI methods to differentiate isomers in the probing area. Coupling tandem mass spectrometry with MSI can facilitate differentiating isomeric compounds in ion images. Here we apply MALDI-TOF/TOF tandem mass spectrometry imaging approach to revealing the spatial distributions of isomeric disaccharides in plant tissues. First, the MS/MS imaging analysis of disaccharide-matrix droplet spots demonstrated the feasibility of distinguishing isomeric species in tissues, by measuring the relative intensity of specific fragments. Then, we conducted tandem MS imaging of disaccharides in onion bulb tissues, which indicated that sucrose and other unknown non-sucrose disaccharides exhibit heterogeneous locations throughout the tissues. This method enables us to image disaccharide isomers differentially in biological tissues, and to discover new saccharide species in plant. This work also emphasizes the necessity of considering isobaric compounds when interpreting MSI results.<br>


2016 ◽  
Vol 7 (3) ◽  
pp. 2162-2169 ◽  
Author(s):  
Alessandra Tata ◽  
Adam Gribble ◽  
Manuela Ventura ◽  
Milan Ganguly ◽  
Emma Bluemke ◽  
...  

Targeted and localized mass spectrometry imaging allows faster characterization of cancer compared to conventional methods.


Sign in / Sign up

Export Citation Format

Share Document