Water-soluble main ions in precipitation over the southeastern Adriatic region: chemical composition and long-range transport

2010 ◽  
Vol 17 (9) ◽  
pp. 1591-1598 ◽  
Author(s):  
Dragana S. Đorđević ◽  
Ivana Tošić ◽  
Miroslava Unkašević ◽  
Pavle Đurašković
1997 ◽  
Vol 69 (1) ◽  
pp. 41-46 ◽  
Author(s):  
I. F. Al-Momani ◽  
G. Güllü ◽  
I. Ölmez ◽  
Ü. Eler ◽  
E. Örtel ◽  
...  

2019 ◽  
Author(s):  
Rachel A. Braun ◽  
Mojtaba Azadi Aghdam ◽  
Paola Angela Bañaga ◽  
Grace Betito ◽  
Maria Obiminda Cambaliza ◽  
...  

Abstract. This study analyzes mechanisms of long-range transport of aerosol and aerosol chemical characteristics in and around East and Southeast Asia. Ground-based size-resolved aerosol measurements collected at the Manila Observatory in Metro Manila, Philippines from July–October 2018 were used to identify and contrast high and low aerosol loading events. Multiple data sources, including models, remote-sensing, and in situ measurements, are used to analyze the impacts of long-range aerosol transport on Metro Manila and the conditions at the local and synoptic scales facilitating this transport. Evidence of long-range transport of biomass burning aerosol from the Maritime Continent was identified through model results and the presence of biomass burning tracers (e.g. K, Rb) in the ground-based measurements. The impacts of emissions transported from continental East Asia are also identified; for one of the events analyzed, this transport was facilitated by the nearby passage of a typhoon. Changes in the aerosol size distributions, water-soluble chemical composition, and contributions of various organic aerosol species to the total water-soluble organic aerosol were examined for the different cases. The events impacted by biomass burning transport had the overall highest concentration of water-soluble organic acids, while the events impacted by long-range transport from continental East Asia, showed high percent contributions from shorter chain dicarboxylic acids (i.e. oxalate) that are often representative of photochemical and aqueous processing in the atmosphere. The low aerosol loading event was subject to a larger precipitation accumulation than the high aerosol events, indicative of wet scavenging as an aerosol sink in the study region. This low aerosol event was characterized by a larger relative contribution from supermicrometer aerosols and had a higher percent contribution from longer-chain dicarboxylic acids (i.e. maleate) to the water-soluble organic aerosol fraction. Results of this study have implications for better understanding of the transport and chemical characteristics of aerosol in a highly-populated region that has thus far been difficult to measure through remote-sensing methods. Furthermore, findings associated with the effects of air mass mixing on aerosol physiochemical properties are applicable to other global regions impacted by both natural and anthropogenic sources.


2008 ◽  
Vol 8 (20) ◽  
pp. 6281-6295 ◽  
Author(s):  
S. Saarikoski ◽  
H. Timonen ◽  
K. Saarnio ◽  
M. Aurela ◽  
L. Järvi ◽  
...  

Abstract. A major fraction of fine particle matter consists of organic carbon (OC) but its origin is still inadequately known. In this study the sources of OC were investigated in the northern European urban environment in Helsinki, Finland. Measurements were carried out over one year and they included both filter (PM1) and online methods. From the filter samples OC, elemental carbon (EC), water-soluble OC (WSOC), levoglucosan and major ions were analyzed. Filter data together with the concentrations of inorganic gases were analyzed by Positive matrix factorization (PMF) in order to find the sources of OC (and WSOC) on an annual as well as on a seasonal basis. In order to study the diurnal variation of sources, OC and EC were measured by a semicontinuous OC/EC analyzer and major ions were determined by a Particle-into-Liquid Sampler coupled to ion chromatographs. According to PMF, OC concentrations were impacted by four sources: biomass combustion, traffic, long-range transport and secondary production. On an annual basis the OC concentration was dominated by secondary organic aerosol (SOA). Its contribution to OC was as high as 64% in summer, which besides anthropogenic sources may also result from the large biogenic volatile organic carbon (VOC) emissions in the boreal region. In winter biomass combustion constituted the largest fraction in OC due to domestic wood combustion for heating purposes. Traffic contributed to OC from 15 to 27%. Regarding the diurnal variation, the contribution from traffic was higher from 08:00 to 18:00 on weekdays than on weekends. The contribution from long-range transport to OC was 24% on average. All four sources also influenced the WSOC concentrations, however, the contribution of SOA was significantly larger for WSOC than OC.


2008 ◽  
Vol 8 (18) ◽  
pp. 5551-5563 ◽  
Author(s):  
J. Sciare ◽  
K. Oikonomou ◽  
O. Favez ◽  
E. Liakakou ◽  
Z. Markaki ◽  
...  

Abstract. Long-term (5-year) measurements of Elemental Carbon (EC) and Organic Carbon (OC) in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island). A multi-analytical approach (including thermal, optical, and thermo-optical techniques) was applied for these EC and OC measurements. Light absorbing dust aerosols were shown to poorly contribute (+12% on a yearly average) to light absorption coefficient (babs) measurements performed by an optical method (aethalometer). Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March–April and July–September). The contribution of biomass burning to the concentrations of EC and OC was shown to be rather small (20 and 14%, respectively, on a yearly basis), although this contribution could be much higher on a monthly basis and showed important seasonal and interannual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC) have shown that the monthly mean WSOC/OC ratio remains stable throughout the year (0.45±0.12), suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA) formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A.D.<1.5μm) showed that the mass contribution of organic matter (POM) was found to be essentially invariable during the year (monthly average of 26±5%).


2008 ◽  
Vol 8 (2) ◽  
pp. 6949-6982 ◽  
Author(s):  
J. Sciare ◽  
K. Oikonomou ◽  
O. Favez ◽  
Z. Markaki ◽  
E. Liakakou ◽  
...  

Abstract. Long-term (5-yr) measurements of Black Carbon (BC) and Organic Carbon (OC) in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island). A multi-analytical approach (including thermal, optical, and thermo-optical techniques) was applied for these BC and OC measurements. Light absorbing dust aerosols have shown to poorly contribute (+17% on a yearly average) to light absorption coefficient (babs) measurements performed by an optical method (aethalometer). Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March–April and July–September). The contribution of biomass burning to the concentrations of BC and OC has shown to be rather small (20 and 14%, respectively, on a yearly basis), although this contribution could be much higher on a monthly basis and is expected a high intra and inter annual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the Spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC) have shown that the monthly mean WSOC/OC ratio remains stable throughout the year (0.45±0.12), suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA) formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A.D.<1.5 μm) showed that the mass contribution of organic matter (POM) was found to be essentially invariable during the year (monthly average of 26±5%).


1997 ◽  
Vol 9 (1) ◽  
pp. 46-55 ◽  
Author(s):  
S.J. de Mora ◽  
D.J. Wylie ◽  
A.L. Dick

This investigation reports the first simultaneous measurement of methanesulphonate (MSA) and non-sea salt sulphate (NSSS) in aerosols, surface snow, and ice core samples for a continental site in Antarctica (78°S, 139°E, elevation 2849 m). Aerosol MSA concentrations ranged from 0.09–0.43 nmol m−3 STP (median 0.14 nmol m−3) and were generally lower than those observed at coastal Antarctic sites. NSSS concentrations varied from 0.66–1.32 nmol m−3 stp (median 0.88 nmol m−3), comparable to those reported for other continental Antarctic locations. Whereas the MSA:NSSS molar ratio in aerosol samples was in the range 12.7–32.5% (median 17.0%), the ratio down a snow pit and ice profile varied from 1.14–55.6% (median 3.50%), reflecting the variability to be expected over a period of a decade. The chemical composition and low MSA content suggests an origin of aerosols consistent with long range transport from mid-latitudes.


2012 ◽  
Vol 12 (11) ◽  
pp. 29391-29442 ◽  
Author(s):  
M. Bressi ◽  
J. Sciare ◽  
V. Ghersi ◽  
N. Bonnaire ◽  
J. B. Nicolas ◽  
...  

Abstract. Studies describing the chemical composition of fine aerosol (PM2.5) in urban areas are often conducted during few weeks only, and at one sole site, giving thus a narrow view of their temporal and spatial characteristics. This paper presents a one-year (11 September 2009–10 September 2010) survey of the daily chemical composition of PM2.5 in the region of Paris, which is the second most populated "Larger Urban Zone" in Europe. Five sampling sites representative of suburban (SUB), urban (URB), northeast (NER), northwest (NWR) and south (SOR) rural backgrounds were implemented. The major chemical components of PM2.5 were determined including elemental carbon (EC), organic carbon (OC), and the major ions. OC was converted to organic matter (OM) using the chemical mass closure methodology, which leads to conversion factors of 1.95 for the SUB and URB sites, and 2.05 for the three rural ones. On average, gravimetrically determined PM2.5 annual mass concentrations are 15.2, 14.8, 12.6, 11.7 and 10.8 μg m−3 for SUB, URB, NER, NWR and SOR sites, respectively. The chemical composition of fine aerosol is very homogeneous at the five sites and is composed of OM (38–47%), nitrate (17–22%), non-sea-salt sulfate (13–16%), ammonium (10–12%), EC (4–10%), mineral dust (2–5%) and sea salt (3–4%). This chemical composition is in agreement with those reported in the literature for most European environments. On the annual scale, Paris (URB and SUB sites) exhibits its highest PM2.5 concentrations during late autumn, winter and early spring (higher than 15 μg m−3 on average, from December to April), intermediates during late spring and early autumn (between 10 and 15 μg m−3 during May, June, September, October, and November) and the lowest during summer (below 10 μg m−3 during July and August). PM levels are mostly homogeneous at the regional scale, on the whole duration of the project (e.g. for URB plotted against NER sites: slope = 1.06, r2 = 0.84, n = 330), suggesting the importance of mid- or long-range transport, and regional instead of local scale phenomena. During this one-year project, two third of the days exceeding the PM2.5 2015 EU annual limit value of 25 μg m−3 were due to continental import from countries located northeast, east of France. This result questions the efficiency of local, regional and even national abatement strategies during pollution episodes, pointing the need for a wider collaborative work with the neighbourhood countries on these topics. Nevertheless, emissions of local anthropogenic sources lead to higher levels at the URB and SUB sites compared to the others (e.g. 26% higher on average at the URB than at the NWR site for PM2.5, during the whole campaign), which can even be emphasised by specific meteorological conditions such as low boundary layer heights. OM and secondary inorganic species (nitrate, non-sea-salt sulfate and ammonium, noted SIA) are mainly imported by mid- or long-range transport (e.g. for NWR plotted against URB sites: slope = 0.79, r2 = 0.72, n = 335 for OM, and slope = 0.91, r2 = 0.89, n = 335 for SIA) whereas EC is primarily locally emitted (e.g. for SOR plotted against URB sites: slope = 0.27; r2 = 0.03; n = 335). This database will serve deepest investigations of carbonaceous aerosols, metals as well as the main sources and geographical origins of PM in the region of Paris.


2015 ◽  
Vol 15 (2) ◽  
pp. 1129-1145 ◽  
Author(s):  
A. Ripoll ◽  
M. C. Minguillón ◽  
J. Pey ◽  
N. Pérez ◽  
X. Querol ◽  
...  

Abstract. The complete chemical composition of atmospheric particulate matter (PM1 and PM10) from a continental (Montsec, MSC, 1570 m a.s.l.) and a regional (Montseny, MSY, 720 m a.s.l) background site in the western Mediterranean Basin (WMB) were jointly studied for the first time over a relatively long-term period (January 2010–March 2013). Differences in average PMX concentration and composition between both sites were attributed to distance to anthropogenic sources, altitude, and different influence of atmospheric episodes. All these factors result in a continental-to-regional background increase of 4.0 μg m−3 for PM10 and 1.1 μg m−3 for PM1 in the WMB. This increase is mainly constituted by organic matter, sulfate, nitrate, and sea salt. However, higher mineral matter concentrations were measured at the continental background site owing to the higher influence of long-range transport of dust and dust resuspension. Seasonal variations of aerosol chemical components were attributed to evolution of the planetary boundary layer (PBL) height throughout the year, variations in the air mass origin, and differences in meteorology. During warmer months, weak pressure gradients and elevated insolation generate recirculation of air masses and enhance the development of the PBL, causing the aging of aerosols and incrementing pollutant concentrations over a large area in the WMB, including the continental background. This is reflected in a more similar relative composition and absolute concentrations of continental and regional background aerosols. Nevertheless, during colder months the thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the time, whereas MSY is more influenced by regional pollutants accumulated under winter anticyclonic conditions. This results in much lower concentrations of PMX components at the continental background site with respect to those at the regional background site. The influence of certain atmospheric episodes caused different impacts at regional and continental scales. When long-range transport from central and eastern Europe and from north Africa occurs, the continental background site is frequently more influenced, thus indicating a preferential transport of pollutants at high altitude layers. Conversely, the regional background site was more influenced by regional processes. Continental and regional aerosol chemical composition from the WMB revealed (a) high relevance of African dust transport and regional dust resuspension; (b) low biomass burning contribution; (c) high organic matter contribution; (d) low summer nitrate concentrations; and (e) high aerosol homogenization in summer.


Sign in / Sign up

Export Citation Format

Share Document