Effects of sampling methods on the quantity and quality of dissolved organic matter in sediment pore waters as revealed by absorption and fluorescence spectroscopy

2015 ◽  
Vol 22 (19) ◽  
pp. 14841-14851 ◽  
Author(s):  
Meilian Chen ◽  
Jong-Hyeon Lee ◽  
Jin Hur
Author(s):  
Jeonghyun Kim ◽  
Yeseul Kim ◽  
Sung Eun Park ◽  
Tae-Hoon Kim ◽  
Bong-Guk Kim ◽  
...  

AbstractIn Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.


As emphasized by Dr Seilacher in his introduction to this symposium, and illustrated in the contribution by Mr Martill, some of the most important examples of fossil Lagersätten occur in marine shales of Mesozoic age. Many of the factors that control the types and preservation of fossils are the same as those that affect the authigenic mineralogy and geochemistry of the shales, notably the degree of aeration or stagnation of the water column and the quantity and quality of the organic matter supplied to the sediment. Perhaps the most important diagenetic reaction in marine shales is sulphate reduction by bacteria that are obligate anaerobes. They can operate in anoxic waters or in ‘reducing microenvironments’ (such as concentrations of organic matter, or enclosed voids within shells) in sediments whose pore waters are kept generally oxic by the effects of burrowing organisms. Sulphate is reduced to sulphide and in the presence of reduced iron this can be precipitated as iron sulphides, normally found in ancient sediments in the form of pyrite. Pyrite is thus a key mineral in studying shale diagenesis, for its geochemistry as well as for its direct importance in preserving fossils by replacement of soft-parts (see, for example, Stürmer 1984), of aragonitic shells (see, for example, Fisher 1985) and by forming internal moulds of chambered shells (see, for example, Hudson & Palframan 1969; Hudson 1982).


Sign in / Sign up

Export Citation Format

Share Document