Pyrite geochemistry and fossil preservation in shales

As emphasized by Dr Seilacher in his introduction to this symposium, and illustrated in the contribution by Mr Martill, some of the most important examples of fossil Lagersätten occur in marine shales of Mesozoic age. Many of the factors that control the types and preservation of fossils are the same as those that affect the authigenic mineralogy and geochemistry of the shales, notably the degree of aeration or stagnation of the water column and the quantity and quality of the organic matter supplied to the sediment. Perhaps the most important diagenetic reaction in marine shales is sulphate reduction by bacteria that are obligate anaerobes. They can operate in anoxic waters or in ‘reducing microenvironments’ (such as concentrations of organic matter, or enclosed voids within shells) in sediments whose pore waters are kept generally oxic by the effects of burrowing organisms. Sulphate is reduced to sulphide and in the presence of reduced iron this can be precipitated as iron sulphides, normally found in ancient sediments in the form of pyrite. Pyrite is thus a key mineral in studying shale diagenesis, for its geochemistry as well as for its direct importance in preserving fossils by replacement of soft-parts (see, for example, Stürmer 1984), of aragonitic shells (see, for example, Fisher 1985) and by forming internal moulds of chambered shells (see, for example, Hudson & Palframan 1969; Hudson 1982).

2013 ◽  
Vol 10 (1) ◽  
pp. 53-66 ◽  
Author(s):  
W. J. Burt ◽  
H. Thomas ◽  
K. Fennel ◽  
E. Horne

Abstract. Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Direct quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water-column properties near the sediment-water interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water-column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of dissolved inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Numerical model results are consistent with the assumptions regarding a constant, single benthic source of 224Ra, the lack of mixing by advective processes, and a predominantly benthic source and sink of DIC and O2, respectively, with minimal water-column respiration in the deep waters of Bedford Basin. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, a relative deficit of nitrate in the observed flux ratios indicates that denitrification also plays a role in the oxidation of organic matter, although its occurrence was not strong enough to allow us to detect the corresponding AT fluxes out of the sediment. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.


2009 ◽  
Vol 59 (2) ◽  
pp. 333-350 ◽  
Author(s):  
Nicole Kowalski ◽  
Olaf Dellwig ◽  
Melanie Beck ◽  
Maik Grunwald ◽  
Sibylle Fischer ◽  
...  

2012 ◽  
Vol 9 (7) ◽  
pp. 9201-9231
Author(s):  
W. J. Burt ◽  
H. Thomas ◽  
K. Fennel ◽  
E. Horne

Abstract. Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water column properties near the sediment-water column interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, we did not observe any significant release of alkalinity (AT) from the sediments to the overlying water column, providing further insight into the dominant reactions taking place within sediments: the respiration of organic matter occurs largely under aerobic conditions or products of anaerobic processes are reoxidized quickly in oxygenated layers of the sediments. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.


2021 ◽  
Vol 13 (3) ◽  
pp. 1109
Author(s):  
Edgar Ricardo Oviedo-Ocaña ◽  
Angélica María Hernández-Gómez ◽  
Marcos Ríos ◽  
Anauribeth Portela ◽  
Viviana Sánchez-Torres ◽  
...  

The composting of green waste (GW) proceeds slowly due to the presence of slowly degradable compounds in that substrate. The introduction of amendments and bulking materials can improve organic matter degradation and end-product quality. However, additional strategies such as two-stage composting, can deal with the slow degradation of green waste. This paper evaluates the effect of two-stage composting on the process and end-product quality of the co-composting of green waste and food waste amended with sawdust and phosphate rock. A pilot-scale study was developed using two treatments (in triplicate each), one being a two-stage composting and the other being a traditional composting. The two treatments used the same mixture (wet weight): 46% green waste, 19% unprocessed food waste, 18% processed food waste, 13% sawdust, and 4% phosphate rock. The traditional composting observed a higher degradation rate of organic matter during the mesophilic and thermophilic phases and observed thermophilic temperatures were maintained for longer periods during these two phases compared to two-stage composting (i.e., six days). Nonetheless, during the cooling and maturation phases, the two treatments had similar behaviors with regard to temperature, pH, and electrical conductivity, and the end-products resulting from both treatments did not statistically differ. Therefore, from this study, it is concluded that other additional complementary strategies must be evaluated to further improve GW composting.


Sign in / Sign up

Export Citation Format

Share Document