Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium

2016 ◽  
Vol 23 (11) ◽  
pp. 11224-11239 ◽  
Author(s):  
Zahid Maqbool ◽  
Sabir Hussain ◽  
Tanvir Ahmad ◽  
Habibullah Nadeem ◽  
Muhammad Imran ◽  
...  
2021 ◽  
Vol 232 (5) ◽  
Author(s):  
Enrique David Victor Giordano ◽  
Maria Emilia Brassesco ◽  
Paola Camiscia ◽  
Guillermo Alfredo Picó ◽  
Nadia Woitovich Valetti

2018 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ojiagu, Kingsley David ◽  
Odibo, Frederick John Chidi ◽  
Ojiagu, Nnenna Chinelo ◽  
Agu, Kingsley Chukwuebuka ◽  
Okafor Arthur Chinedu

Author(s):  
Zainab M. Sani ◽  
Aisha S. Dalhatu ◽  
Baha’uddeen S. Adam ◽  
Kasim Mohammed ◽  
Yusuf Y. Muhammad ◽  
...  

Aim: The work was aimed at assessing the potential of Chlorella vulgaris in remediation of reactive dyes. Place and Duration of Study: Department of Biological Sciences, Department of Plant Biology and Department of Biochemistry, Bayero University, Kano, Nigeria, between January 2019 and December 2019. Methodology: Wastewater containing individual reactive dyes: reactive red 198 (RR198), reactive yellow 176 (RY176), reactive green 19 (RG19), reactive orange 122 (RO122), reactive red 195 (RR195) and reactive violet 1 (RV1) were collected from a local fabric re-dyeing pit at Kofar Na’isa, Kano, Nigeria. The green microalga C. vulgaris was cultured in Bold Basal medium (BBM) at 30 ± 2°C and subjected to adsorption and decolourization assays of the dyes. Results: The highest dye removal efficiency by enzymatic action was recorded after 48 hours, while that for the biomass adsorption was at day 14, at pH 11.3 and temperature of 30°C. The percentage dye removal by adsorption and decolourization were within the ranges of 68.1-97.8% and 69.8-99.9% respectively. Dye removal decreased with increase in contact time until saturation is attained. Freundlich’s isotherm model was best fitted for the adsorption of the dyes with a strong linear correlation coefficient, R2 ranging from 0.954-0.811. There was a strong linear relationship and high statistical significance among the dyes for both decolourization and adsorption (P value; .01). Conclusion: Chlorella vulgaris was found to be effective in the removal of reactive dyes from textile wastewater samples. The results revealed C. vulgaris to be a cost-effective and eco-friendly biosorbent that can be used for the treatment of wastewaters containing toxic dyes.


2021 ◽  
pp. 231-246
Author(s):  
Mohit Garg ◽  
Sarbani Ghosh ◽  
Amit Kumar ◽  
Vikram Chopra ◽  
Indra Deo Mall ◽  
...  

2013 ◽  
Vol 803 ◽  
pp. 26-29 ◽  
Author(s):  
Antonio Zuorro ◽  
Maria Laura Santarelli ◽  
Roberto Lavecchia

Spent tea leaves (STL), a valueless waste produced during the manufacturing of tea beverages, were investigated as a potential low-cost adsorbent for the removal of the azo dyes Reactive Blue 19 (RB19), Reactive Red 120 (RR 120), Reactive Violet 5 (RV5) and Reactive Green 19 (R19) from wastewater. Untreated STL showed very low removal efficiency (< 7%), while a significant increase in dye adsorption was observed when they were thermally activated. Heating STL to 300 °C for 1 hour resulted in removal efficiencies ranging from 68.5 to 98.4%. Characterization of the waste by FTIR and TG/DTA indicated that major structural and/or chemical changes of the cellulose and hemicellulose components of STL occurred during heating.


Sign in / Sign up

Export Citation Format

Share Document