Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.)

2016 ◽  
Vol 23 (9) ◽  
pp. 8317-8326 ◽  
Author(s):  
Radek Zouzelka ◽  
Pavlina Cihakova ◽  
Jana Rihova Ambrozova ◽  
Jiri Rathousky
2020 ◽  
Vol 9 (1) ◽  
pp. 283-293
Author(s):  
Milad Torabfam ◽  
Meral Yüce

AbstractGreen synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. This study describes the practical synthesis of silver nanoparticles (AgNPs) through the reduction of silver nitrate solution using an algal source, Chlorella vulgaris, as the reducing as well as the stabilizing agent. The energy required for this synthesis was supplied by microwave radiation. The ultraviolet-visible spectroscopy exhibited a single peak related to the surface plasmon absorbance of AgNPs at 431 nm. The AgNPs with high stability (a zeta potential of −17 mV), hydrodynamic size distribution of 1–50 nm, and mostly spherical shape were obtained through a 10 min process. Fourier transform infrared spectroscopy analysis revealed that several functional groups, including carbonyl groups of C. vulgaris, play a significant role in the formation of functional NPs. Antibacterial features of the produced AgNPs were verified against those of Salmonella enterica subsp. enterica serovar typhimurium and Staphylococcus aureus, demonstrating a considerable growth inhibition at increasing concentrations of the NPs. As a result, the formed AgNPs can be used as a promising agent against bacterial diseases.


2020 ◽  
Author(s):  
Stefania Mariano ◽  
Elisa Panzarini ◽  
Maria Dias Inverno ◽  
Nikolaos Voulvoulis ◽  
Luciana Dini

Abstract BackgroundSilver nanoparticles (AgNPs) are one of the most widely used nanomaterials in consumer products. When discharged into the aquatic environment AgNPs can cause toxicity to aquatic biota, through mechanisms that are still under debate, thus rendering the NPs effects evaluation a necessary step. Different aquatic organism models, i.e. microalgae, mussels, Daphnia magna, sea urchins and Danio rerio, etc. have been largely exploited for NPs toxicity assessment. On the other hand, alternative biological microorganisms abundantly present in nature, i.e. microalgae, are nowadays exploited as a potential sink for removal of toxic substances from the environment. Indeed, the green microalgae Chlorella vulgaris is one of the most used microorganisms for waste treatment.ResultsWith the aim to verify the possible involvement of C. vulgaris not only as a model microorganism of NPs toxicity but also for the protection toward NPs pollution, we used these microalgae to measure the AgNPs biotoxicity and bioaccumulation. In particular, to exclude any toxicity derived by Ag+ ions release, green chemistry synthesised and Glucose coated AgNPs (AgNPs-G) were used. C. vulgaris actively internalised AgNPs-G whose amount increases in a time and dose-dependent manner. The internalised NPs, found inside large vacuoles, were not released back into the medium, even after 1 week, and did not undergo biotransformation since AgNPs-G maintained their crystalline nature. Biotoxicity of AgNPs-G causes an exposure time and AgNPs-G dose-dependent growth reduction and a decrease in chlorophyll-a amount.ConclusionsThese results confirm C. vulgaris as a biomonitoring organism and also suggest it as a bioaccumulating microalgae for possible use in the environment protection.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 675 ◽  
Author(s):  
Ivana Puglisi ◽  
Valeria Barone ◽  
Ferdinando Fragalà ◽  
Piergiorgio Stevanato ◽  
Andrea Baglieri ◽  
...  

Sugar beet (Beta vulgaris subsp. vulgaris) is a commercially important biennial root crop, providing about 20% of the world’s annual sugar production. Seed quality is crucial for adequate plant growth and production. The productivity of sugar beet is often limited by heterogeneous germination in the field. In order to improve the sugar beet germination process, the effect of different concentrations of microalgal extracts from Chlorella vulgaris or Scenedesmus quadricauda was investigated by calculating several indices useful to evaluate the germination performance. Moreover, root morphological analysis was performed by using WinRHIZO software. B. vulgaris seeds were soaked with five different concentrations (from 0.1 to 10 mg Corg/L) of the microalgal extracts, considering the amount of organic carbon (Corg) in each extract. Our results show that these microalgal extracts exert a positive effect on sugar beet germination, by increasing efficiency and regularity of this critical process for B. vulgaris seeds. The best results, in terms of germination indices as well as root morphological traits, were reached by using C. vulgaris extract at the concentrations C2 (1 mg Corg/L) and C3 (2 mg Corg/L).


2018 ◽  
Vol 53 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Ivana Puglisi ◽  
Valeria Barone ◽  
Sarah Sidella ◽  
Mauro Coppa ◽  
Chiara Broccanello ◽  
...  

2016 ◽  
Vol 23 (18) ◽  
pp. 18165-18174 ◽  
Author(s):  
Andrea Baglieri ◽  
Sarah Sidella ◽  
Valeria Barone ◽  
Ferdinando Fragalà ◽  
Alla Silkina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document