Influence of surface properties of RO membrane on membrane fouling for treating textile secondary effluent

2017 ◽  
Vol 24 (19) ◽  
pp. 16253-16262 ◽  
Author(s):  
Zhonglong Yin ◽  
Cheng Yang ◽  
Chao Long ◽  
Aimin Li
2013 ◽  
Vol 838-841 ◽  
pp. 2712-2716
Author(s):  
Yong Tu ◽  
Yong Gang Bai ◽  
Yong Chen ◽  
Wei Jing Liu ◽  
Jun Xu ◽  
...  

The research on ultrafiltration membrane assisted by powdered zeolite for the treatment of secondary effluent from a municipal wastewater treatment plant was studied. The results show that membrane fouling rate is reduced by pre-coating the ultrafiltration membrane with powdered zeolite, and the treatment performance of secondary effluent is enhanced. UV-vis, three-dimensional excitation emission matrix (3D-EEM) fluorescence spectra and scanning electron microscopy (SEM) images for ultrafiltration were also discussed.


2009 ◽  
Vol 3 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Jian-Jun Qin ◽  
Boris Liberman ◽  
Kiran A. Kekre ◽  
Ado Gossan

Reverse osmosis (RO) has been widely applied in various water and wastewater treatment processes as a promising membrane technology. However, RO membrane fouling is a global issue, which limits it operating flux, decreases water production, increases power consumption and requires periodical membranes Cleaning-in-Place (CIP) procedure. This may result in low effectiveness, high cost and adds environmental issues related to the CIP solutions disposal. Forward osmosis (FO) or direct osmosis (DO) is the transport of water across a semi-permeable membrane from higher water chemical potential side to lower water chemical potential side, which phenomenon was observed in 1748. The engineered applications of FO/DO in membrane separation processes have been developed in food processing, wastewater treatment and seawater/brackish water desalination. In recent years, DO has been increasingly attractive for RO fouling control as it is highly efficient and environmentally friendly technique which is a new backwash technique via interval DO by intermittent injection of the high salinity solution without stoppage of high pressure pump or interruption of the operational process and allows keeping RO membrane continuously clean even in heavy bio-fouling conditions and operating RO membranes at high flux. This paper provides the state-of-the-art of the physical principles and applications of DO for RO fouling control as well as its strengths and limitations.


Author(s):  
Haruka Takeuchi ◽  
Naoyuki Yamashita ◽  
Norihide Nakada ◽  
Hiroaki Tanaka

This study investigated the removal characteristics of N-Nitrosamines and their precursors at three pilot-scale water reclamation plants. These plants applies different integrated membrane systems: (1) microfiltration (MF)/nanofiltration (NF)/reverse osmosis (RO) membrane; (2) sand filtration/three-stage RO; and (3) ultrafiltration (UF)/NF and UF/RO. Variable removal of N-Nitrosodimethylamine (NDMA) by the RO processes could be attributed to membrane fouling and the feed water temperature. The effect of membrane fouling on N-Nitrosamine removal was extensively evaluated at one of the plants by conducting one month of operation and chemical cleaning of the RO element. Membrane fouling enhanced N-Nitrosamine removal by the pilot-scale RO process. This finding contributes to better understanding of the variable removal of NDMA by RO processes. This study also investigated the removal characteristics of N-Nitrosamine precursors. The NF and RO processes greatly reduced NDMA formation potential (FP), but the UF process had little effect. The contributions of MF, NF, and RO processes for reducing FPs of NDMA, N-Nitrosopyrrolidine and N-Nitrosodiethylamine were different, suggesting different size distributions of their precursors.


2010 ◽  
Vol 61 (8) ◽  
pp. 2035-2041 ◽  
Author(s):  
H. Mo ◽  
H. Y. Ng

This study was to experimentally investigate the performance and organic fouling behaviour in a 1-m long RO membrane channel with or without spacer for desalting. It was found that local permeate flux distributed heterogeneously along the long membrane channel without a spacer inserted due to exponential growth of concentration polarization, which also resulted in decreasing salt rejection and increasing organic fouling along the membrane channel in the downstream direction. This heterogeneity could be lessened by inserting a spacer into the channel, which mitigated concentration polarization due to the enhanced turbulence caused by a spacer, especially at the downstream portion of the channel. However, in the upstream of the channel, inserting a spacer exerted an additional vertical resistance which might counteract the effect of concentration polarization mitigation by a spacer and caused a lower permeate flux. This suggests that it is necessary to consider the integral effect of spacer for designing an RO membrane module and an overall RO system in order to prevent extra resistance, reduce concentration polarization and membrane fouling.


Sign in / Sign up

Export Citation Format

Share Document