Potentially toxic elements in groundwater: a hotspot research topic in environmental science and pollution research

Author(s):  
Panagiotis Papazotos
Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1729
Author(s):  
Dongming Zhang ◽  
Miles Dyck ◽  
Lana Filipović ◽  
Vilim Filipović ◽  
Jialong Lv ◽  
...  

Phytoremediation is an effective and low-cost method for the remediation of soil contaminated by potentially toxic elements (metals and metalloids) with hyperaccumulating plants. This study analyzed hyperaccumulator publications using data from the Web of Science Core Collection (WoSCC) (1992-2020). We explored the research status on this topic by creating a series of scientific maps using VOSviewer, HistCite Pro, and CiteSpace. The results showed that the total number of publications in this field shows an upward trend. Dr. Xiaoe Yang is the most productive researcher on hyperaccumulators and has the broadest international collaboration network. The Chinese Academy of Sciences (China), Zhejiang University (China), and the University of Florida (USA) are the top three most productive institutions in the field. China, the USA, and India are the top three most productive countries. The most widely used journals were the International Journal of Phytoremediation, Environmental Science and Pollution Research, and Chemosphere. Co-occurrence and citation analysis were used to identify the most influential publications in this field. In addition, possible knowledge gaps and perspectives for future studies are also presented.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 812
Author(s):  
Agnieszka Stojanowska ◽  
Tomasz Mach ◽  
Tomasz Olszowski ◽  
Jan Stefan Bihałowicz ◽  
Maciej Górka ◽  
...  

Air pollution is monitored mainly in urban or industrial areas, even if it is known that in rural ones, low emission can significantly worsen air quality. Hence, cheap and easily accessible methods of monitoring are needed. Recently, spider webs biomonitoring is getting popular, however, there is no information about its comparison with active methods. In this study, PTEs accumulated on spider webs were compared with results from continuous particulate monitor (CPM). Generally, higher potentially toxic elements concentrations were noted in spider web, with exception in the case of Zn. Zn may be present rather in smaller fractions, hence it needs more time for accumulation on spider web while it is easily collected by CPM. Higher concentrations of other elements on spider webs may result from formation of aggregates which could not be reported in PM10 sampling (CPM). What is more, the order of the most and the least accumulated elements were similar and the percentage share of studied elements was coherent in most cases, proving that this new tool prospers to become commonly used in biomonitoring. Additionally, to identify possible sources of pollution air backward trajectories and trajectory frequencies for Kotórz were prepared based on the HYSPLIT model.


Author(s):  
Shufeng She ◽  
Bifeng Hu ◽  
Xianglin Zhang ◽  
Shuai Shao ◽  
Yefeng Jiang ◽  
...  

Potentially toxic elements (PTEs) pollution in the agricultural soil of China, especially in developed regions such as the Yangtze River Delta (YRD) in eastern China, has received increasing attention. However, there are few studies on the long-term assessment of soil pollution by PTEs over large regions. Therefore, in this study, a meta-analysis was conducted to evaluate the current state and temporal trend of PTEs pollution in the agricultural land of the Yangtze River Delta. Based on a review of 118 studies published between 1993 and 2020, the average concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were found to be 0.25 mg kg−1, 0.14 mg kg−1, 8.14 mg kg−1, 32.32 mg kg−1, 68.84 mg kg−1, 32.58 mg kg−1, 92.35 mg kg−1, and 29.30 mg kg−1, respectively. Among these elements, only Cd and Hg showed significant accumulation compared with their background values. The eastern Yangtze River Delta showed a relatively high ecological risk due to intensive industrial activities. The contents of Cd, Pb, and Zn in soil showed an increasing trend from 1993 to 2000 and then showed a decreasing trend. The results obtained from this study will provide guidance for the prevention and control of soil pollution in the Yangtze River Delta.


2021 ◽  
pp. 112285
Author(s):  
Neus González ◽  
Eudald Correig ◽  
Isa Marmelo ◽  
António Marques ◽  
Rasmus la Cour ◽  
...  

Author(s):  
Zahra Biglari Quchan Atigh ◽  
Pourya Sardari ◽  
Ebrahim Moghiseh ◽  
Behnam Asgari Lajayer ◽  
Andrew S. Hursthouse

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 613
Author(s):  
Samantha Jiménez-Oyola ◽  
Kenny Escobar Segovia ◽  
María-Jesús García-Martínez ◽  
Marcelo Ortega ◽  
David Bolonio ◽  
...  

Anthropogenic activities performed in the Ecuadorian Amazon have released potentially toxic elements (PTEs) into the rivers, causing severe environmental pollution and increasing the risk of exposure to the residents of the surrounding areas. This study aims to carry out a human health risk assessment using deterministic and probabilistic methods to estimate the hazard index (HI) and total cancer risk (TCR) related to multi-pathway human exposure to PTEs in polluted rivers. Concentrations of Al, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in surface water and sediment samples from rivers on the Ecuadorian Amazon were considered to assess the potential adverse human health effects. As a result, deterministic and probabilistic estimations of cancer and non-cancer risk through exposure to surface waters and sediments were above the safety limit. A sensitivity analysis identified the concentration of PTEs and the exposure duration (ED) as the two most important variables for probabilistic health risk assessment. The highest risk for receptors was related to exposure to polluted sediments through incidental ingestion and dermal contact routes. According to the deterministic estimation, the human health risk through ingestion of water was above the threshold in specific locations. This study reveals the potential health risk to which the population is exposed. This information can be used as a baseline to develop public strategies to reduce anthropogenic pollution and exposure to PTEs in Ecuadorian Amazon rivers.


Sign in / Sign up

Export Citation Format

Share Document