Role of organic/sulfide ratios on competition of DNRA and denitrification in a co-driven sequencing biofilm batch reactor

Author(s):  
Xiaoling Li ◽  
Jianqiang Zhao ◽  
Yuhao Zhang ◽  
Jiaojie He ◽  
Kaili Ma ◽  
...  
2004 ◽  
Vol 49 (11-12) ◽  
pp. 19-25 ◽  
Author(s):  
B.S. McSwain ◽  
R.L. Irvine ◽  
P.A. Wilderer

Self-immobilized biofilms, or aerobic granules without the addition of carrier material, have only been reported in one suspended growth system, the Sequencing Batch Reactor (SBR) with a very short fill time (dump fill). The SBR utilizes intermittent feeding which creates a period of high load followed by starvation (often referred to as feast-famine). In this experiment, three identical SBRs were operated with different feeding conditions to determine the role of feast-famine on granule formation. All three SBRs were operated with a total volumetric load of 2.4 kg/m3·d. The 90 minute Fill phase was altered for each reactor, providing an increasing time of Aerated Fill. A dump fill condition was applied for one reactor, while the other two reactors were aerated for different times during Fill, resulting in a smaller COD load at the beginning of each React phase. Aerobic granules formed in all reactors, but the structural properties and content of filamentous organisms were clearly dependent on a high feast condition. Only the reactor with dump fill formed compact, stable granules. It is concluded that intermittent feeding associated with the SBR affects the selection and growth of filamentous organisms and has a critical role in granule structure and composition.


Author(s):  
Karla María Muñoz-Páez ◽  
Germán Buitrón

Abstract This study compares the H2 production from glucose, xylose, and acidic hydrolysates of Agave tequilana bagasse as substrates. The fermentation was performed in a granular sludge reactor operated in two phases: (1) model substrates (glucose and xylose) and (2) acidic hydrolysates at 35 °C, pH 4.5 and a hydraulic retention time of 5.5 with glucose (10 g L−1) and xylose (12 g L−1). A sequencing batch reactor was used to acclimate the biomass between the glucose and xylose continuous fermentation (with a mixture of xylose-glucose) and acidic hydrolysates. During the discontinuous acclimating step, the xylose/glucose ratio increment negatively affected the H2 productivity. Although the continuous H2 production with xylose was negligible, the co-fermentation with glucose (88–12%) allowed H2 productivity of 2,889 ± 502 mL H2 L−1d−1. An acidic hydrolysate concentration of 3.3 gcarbohydrate L−1 showed a 3-fold higher H2 productivity than with a concentration of 10 g L−1. The results indicated that xylose, as the only substrate, was challenging to metabolize by the inoculum, and its mixture with glucose improved the H2 productivity. Therefore, the low H2 productivity with hydrolysates could be related to the presence of xylose.


2014 ◽  
Vol 86 (9) ◽  
pp. 800-809 ◽  
Author(s):  
Heloísa Fernandes ◽  
Heike Hoffmann ◽  
Regina V. Antonio ◽  
Rejane H. R. Costa

2012 ◽  
Vol 191 ◽  
pp. 75-84 ◽  
Author(s):  
Anwar Khursheed ◽  
Rubia Z. Gaur ◽  
Akanksha Bhatia ◽  
Abid Ali Khan ◽  
Vinay Kumar Tyagi ◽  
...  

1997 ◽  
Vol 35 (4) ◽  
pp. 103-110 ◽  
Author(s):  
K. Fajerwerg ◽  
J. N. Foussard ◽  
A. Perrard ◽  
H. Debellefontaine

This paper presents an original approach to the treatment of phenolic aqueous wastes using H2O2 with Fe-ZSM-5 as a heterogeneous catalyst. The Fe-ZSM-5 zeolite with MFI structure allows a total elimination of phenol and a significant total organic carbon (TOC) removal at 90°C and atmospheric pressure in a batch reactor. The studies with this Fe-ZSM-5 catalyst deal mainly with the influence of external diffusion and pH on the oxidation process. It appears that the phenol degradation and the toxicity reduction, on the one hand, and the leaching-off of Fe(III) ions in the solution, on the other hand, depend strongly on the pH. In these conditions, an optimum value exists at pH = 5. At higher pH values, the system becomes less effective. At lower values, a significant leaching-off will induce homogeneous catalysis and the degradation of the catalyst. Generally speaking, when this heterogeneous catalyst is used in the presence of H2O2, the reaction rates depend on the degree of hydroxylation of the aromatic compound in contact with the catalyst. So, a chain radical mechanism could be envisaged.


2011 ◽  
Vol 233-235 ◽  
pp. 888-891
Author(s):  
Hua Feng Luo ◽  
Kai Cheng Ling ◽  
Wei Shuai Zhang

In this paper, the role of hydrogen for quick coal liquefaction at high temperament (QCLHT) was investigated by liquefaction of Yanzhou coal using a 17ml tubular resonance agitation miniature batch reactor. The result shows (1) that QCLHT of Yanzhou coal without catalyst using mixed solvents with different mole ratio of 1,2,3,4-tetrahydronaphthalene to naphthalene shows that hydrogen hardly participate the reaction and active hydrogen mainly comes from hydrogen donor solvents and hydrogen-rich belonged to coal itself (2) For QCLHT,. high-dispersed iron-based catalyst (and cocatalyst sulfur) not only promotes the activation of dissolved hydrogen but also accelerates the pyrolysis of coal, which results in the increase of liquefaction total conversion and light component. Introduction


2021 ◽  
Author(s):  
Xiaoling Li ◽  
Jianqiang Zhao ◽  
Yuhao Zhang ◽  
Jiaojie He ◽  
Kaili Ma ◽  
...  

Abstract Denitrification and dissimilatory nitrate reduction to ammonium (DNRA), are two competing pathways in nitrate reducing process. In this study, a series of C/S ratios from 8:1 to 2:4 was investigated in a sequencing biofilm batch reactor (SBBR) to determine the role of reducers (sulfide and acetate) on their competition. The results showed the proportion of DNRA increased in high electron system, either in organic rich or in sulfide rich system. The highest DNRA ratio increased to 16.7% at the C/S ratio of 2:3. Excess electron donors, particularly sulfide, were favorable for DNRA in a limited nitrate environment. Moreover, a higher reductive environment (ORP <-400 mV) can be used as an indicator for the occurrence of DNRA. 16s RNA analysis demonstrated that Grobacter was the main functional bacteria of DNRA in the organic rich system, while Alphaproteobacteria and Desulfomicrobium were dominant DNRA bacteria in the sulfide rich system. DNRA cultivation could enrich nitrogen conversion pathways in conventional denitrification systems. This provides the great insight into nitrogen removal in high nitrogen containing sewage with low C/N.


Sign in / Sign up

Export Citation Format

Share Document