Soil organic matter alteration under biochar amendment: study in the incubation experiment on the Podzol soils of the Leningrad region (Russia)

2019 ◽  
Vol 19 (6) ◽  
pp. 2708-2716 ◽  
Author(s):  
Nataliya Orlova ◽  
Evgeny Abakumov ◽  
Elena Orlova ◽  
Kirill Yakkonen ◽  
Vlada Shahnazarova
2008 ◽  
Vol 5 (1) ◽  
pp. 129-132 ◽  
Author(s):  
B. Vieten ◽  
F. Conen ◽  
B. Seth ◽  
C. Alewell

Abstract. Soils are capable to consume N2O. It is generally assumed that consumption occurs exclusively via respiratory reduction to N2 by denitrifying organisms (i.e. complete denitrification). Yet, we are not aware of any verification of this assumption. Some N2O may be assimilatorily reduced to NH3. Reduction of N2O to NH3 is thermodynamically advantageous compared to the reduction of N2. Is this an ecologically relevant process? To find out, we treated four contrasting soil samples in a flow-through incubation experiment with a mixture of labelled (98%) 15N2O (0.5–4 ppm) and O2 (0.2–0.4%) in He. We measured N2O consumption by GC-ECD continuously and δ15N of soil organic matter before and after an 11 to 29 day incubation period. Any 15N2O assimilatorily reduced would have resulted in the enrichment of soil organic matter with 15N, whereas dissimilatorily reduced 15N2O would not have left a trace. None of the soils showed a change in δ15N that was statistically different from zero. A maximum of 0.27% (s.e. ±0.19%) of consumed 15N2O may have been retained as 15N in soil organic matter in one sample. On average, 15N enrichment of soil organic matter during the incubation may have corresponded to a retention of 0.019% (s.e. ±0.14%; n=4) of the 15N2O consumed by the soils. We conclude that assimilatory reduction of N2O plays, if at all, only a negligible role in the consumption of N2O in soils.


2007 ◽  
Vol 4 (5) ◽  
pp. 3331-3341 ◽  
Author(s):  
B. Vieten ◽  
F. Conen ◽  
B. Seth ◽  
C. Alewell

Abstract. Soils are capable to consume N2O. It is generally assumed that consumption occurs exclusively via respiratory reduction to N2 by denitrifying organisms (i.e. complete denitrification). Yet, we are not aware of any verification of this assumption. Some N2O may be assimilatorily reduced to NH3. Reduction of N2O to NH3 is thermodynamically advantageous compared to the reduction of N2. Is this an ecologically relevant process? To find out, we treated four contrasting soil samples in a flow-through incubation experiment with a mixture of labelled (98%) 15N2O (0.5–4 ppm) and O2 (0.2–0.4%) in He. We measured N2O consumption by GC-ECD continuously and δ15N of soil organic matter before and after an 11 to 29 day incubation period. Any 15N2O assimilatorily reduced would have resulted in the enrichment of soil organic matter with 15N, whereas dissimilatorily reduced 15N2O would not have left a trace. None of the soils showed a change in δ15N that was statistically different from zero. A maximum of 0.27 % (s.e. ±0.19%) of consumed 15N2O may have been retained as 15N in soil organic matter in one sample. On average, 15N enrichment of soil organic matter during the incubation may have corresponded to a retention of 0.019% (s.e. ±0.14%; n=4) of the 15N2O consumed by the soils. We conclude that assimilatory reduction of N2O plays, if at all, only a negligible role in the consumption of N2O in soils.


2016 ◽  
Vol 13 (5) ◽  
pp. 854 ◽  
Author(s):  
Perry J. Mitchell ◽  
André J. Simpson ◽  
Ronald Soong ◽  
Myrna J. Simpson

Environmental contextBiochar amendment in soil can sequester carbon but may also stimulate microbial activity, potentially enhancing soil organic matter degradation. We incubated biochar in a temperate forest soil and characterised the soil organic matter composition using molecular-level biomarker and nuclear magnetic resonance techniques. Biochar amendment altered the native soil organic matter composition and decreased the concentration of easily degradable soil organic matter components. AbstractBiochar amendment in soil can sequester carbon and improve soil water and nutrient retention, fertility and plant productivity. However, biochar may stimulate microbial activity, leading to priming or accelerated soil organic matter (OM) degradation, which could alter the native soil OM molecular composition. To investigate this, we amended sugar maple wood biochar (pyrolysed at 500°C) at four concentrations (0, 5, 10 and 20 metric tons per hectare) in a temperate forest soil for 32 weeks. Solvent extraction and CuO oxidation were used to characterise free compounds and lignin-derived phenols respectively at 8 week intervals, while base hydrolysis was used to examine plant wax, cutin and suberin components at the end of the incubation. Stimulated soil microbial activity following an adaptation period (16 weeks) resulted in increased inputs of microbial- and plant-derived soil OM components including solvent-extractable short-chain n-alkanols and n-alkanoic acids, long-chain n-alkanes and n-alkanols, and sugars. Degradation parameters for base-hydrolysable cutin- and suberin-derived compounds did not show any significant degradation of these plant biopolymers. Analysis of lignin-derived phenols revealed lower concentrations of extractable phenols and progressive oxidation of syringyl and vanillyl phenols at higher biochar application rates over time. Solution-state 1H nuclear magnetic resonance analysis of base-extractable soil OM after 32 weeks showed a decrease in the proportion of labile OM components such as carbohydrates and peptides and a relative increase in more recalcitrant polymethylene OM constituents in the amended soils. The biochar-mediated shifts in soil OM composition and reduction in labile carbon may reduce soil fertility in biochar-amended systems with long-term amendment.


2021 ◽  
Author(s):  
Arturo Santa-Olalla ◽  
Elena Fernandez-Boy ◽  
Paloma Campos ◽  
Heike Knicker ◽  
Rafael Lopez ◽  
...  

<p>It is estimated that over 37 % of degraded soils in the European Union are polluted by heavy metals [1], which are non-biodegradable and persistent pollutants in soils. The application of organic amendments to soils for their remediation has been worldwide used [2]. Several studies have shown that biochar, the carbonaceous material produced by pyrolysis of organic residues, has a high potential to stabilize trace elements in soils [3]. Biochars usually have an alkaline pH and high water holding capacity (WHC), large specific surface area and cation exchange capacity, which are appropriate characteristics to reduce the availability of heavy metals in the environment [4]. Nevertheless, recent studies exhibited that biochar recalcitrance could be much lower than assumed [5].  Beside this, the effects of the addition of biochar as a soil amendment on the composition of soil organic matter (SOM) are largely unknown. Thus, the aim of this study is to investigate the effects of the application of biochars from rice husk (RHB) and olive pit (OPB) in a Typic Xerofluvent polluted with trace-elements after 24 months at field in 12 plots installed at the surroundings of the Guadiamar Green Corridor (37° 23' 7.152"N, 6° 13' 43.175"; Southwest Spain). Specifically, for this study the effects of biochar amendment on soil physical properties (pH, water holding capacity-WHC, moisture, etc), elemental composition, total SOM, the content of oxidizable SOM as well as the content and composition of humic acids (HAs) have been assessed.</p><p>Biochar application caused an increase in soil pH (around 0.4 units), soil moisture (from 6-7% to 10-18 %) and WHC. In addition, the total organic carbon and HAs content increased slightly. Preliminary results show that biochar could become part of the humified SOM in a shorter time than initially expected. Nevertheless, the spectroscopic analyses (FT-IR and <sup>13</sup>C NMR spectroscopy) documented that the qualitative composition of soil HAs was not altered due to the biochar amendment.</p><p><strong> </strong></p><p><em>References</em>:</p><p>[1] EEA; 2007. CSI 015. Copenhagen, Denmark: European Environmental Agency.</p><p>[2] Madejón, E.; Pérez de Mora, A.; Burgos, P.; Cabrera, F.; 2006. Environ. Pollut. 139, 40-52.</p><p>[3] Campos, P., De la Rosa, J.M., 2020. Sustainability 12, 6025.Uchimiya, M.; Klasson, K.T.; Wartelle, L.H.; Lima, I.M.; 2011. Chemosphere 82, 1438-1447.</p><p>[4] Campos, P., Miller, A.Z., Knicker, H., Costa-Pereira, M.F., Merino, A., De la Rosa, J.M., 2020. Waste Manag. 105, 256-267.</p><p>[5] De la Rosa, J.M.; Rosado, M.; Paneque, M.; Miller, A.Z.; Knicker, H.; 2018. Sci. Tot Environ. 613-614, 969-976.</p><p><em>Acknowledgements</em>: The Spanish Ministry of Economy, Industry and Competitiveness (MINEICO), CSIC and AEI/FEDER are thanked for funding the project CGL2016-76498-R. P. Campos thanks the “Fundación Tatiana Pérez de Guzmán el Bueno” for funding her PhD.</p>


Sign in / Sign up

Export Citation Format

Share Document