On the fourth moment of coefficients of symmetric square L-function

2012 ◽  
Vol 33 (6) ◽  
pp. 877-888
Author(s):  
Huixue Lao
Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1254
Author(s):  
Xue Han ◽  
Xiaofei Yan ◽  
Deyu Zhang

Let Pc(x)={p≤x|p,[pc]areprimes},c∈R+∖N and λsym2f(n) be the n-th Fourier coefficient associated with the symmetric square L-function L(s,sym2f). For any A>0, we prove that the mean value of λsym2f(n) over Pc(x) is ≪xlog−A−2x for almost all c∈ε,(5+3)/8−ε in the sense of Lebesgue measure. Furthermore, it holds for all c∈(0,1) under the Riemann Hypothesis. Furthermore, we obtain that asymptotic formula for λf2(n) over Pc(x) is ∑p,qprimep≤x,q=[pc]λf2(p)=xclog2x(1+o(1)), for almost all c∈ε,(5+3)/8−ε, where λf(n) is the normalized n-th Fourier coefficient associated with a holomorphic cusp form f for the full modular group.


1983 ◽  
Vol 266 (2) ◽  
pp. 233-239 ◽  
Author(s):  
Carlos J. Moreno ◽  
Freydoon Shahidi
Keyword(s):  

2010 ◽  
Vol 130 (9) ◽  
pp. 2078-2091 ◽  
Author(s):  
Neil Dummigan ◽  
Bernhard Heim
Keyword(s):  

2011 ◽  
Vol 680 ◽  
pp. 321-335 ◽  
Author(s):  
STEPHEN MONTGOMERY-SMITH ◽  
WEI HE ◽  
DAVID A. JACK ◽  
DOUGLAS E. SMITH

This paper presents an exact formula for calculating the fourth-moment tensor from the second-moment tensor for the three-dimensional Jeffery's equation. Although this approach falls within the category of a moment tensor closure, it does not rely upon an approximation, either analytic or curve fit, of the fourth-moment tensor as do previous closures. This closure is orthotropic in the sense of Cintra & Tucker (J. Rheol., vol. 39, 1995, p. 1095), or equivalently, a natural closure in the sense of Verleye & Dupret (Developments in Non-Newtonian Flow, 1993, p. 139). The existence of these explicit formulae has been asserted previously, but as far as the authors know, the explicit forms have yet to be published. The formulae involve elliptic integrals, and are valid whenever fibre orientation was isotropic at some point in time. Finally, this paper presents the fast exact closure, a fast and in principle exact method for solving Jeffery's equation, which does not require approximate closures nor the elliptic integral computation.


2014 ◽  
Vol 12 (7) ◽  
Author(s):  
Qingfeng Sun

AbstractLet F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.


Sign in / Sign up

Export Citation Format

Share Document