Analgesic and anti-inflammatory activities of Citrus aurantium L. blossoms essential oil (neroli): involvement of the nitric oxide/cyclic-guanosine monophosphate pathway

2015 ◽  
Vol 69 (3) ◽  
pp. 324-331 ◽  
Author(s):  
Pariya Khodabakhsh ◽  
Hamed Shafaroodi ◽  
Jinous Asgarpanah
Author(s):  
Thomas J Pirtle ◽  
Richard A Satterlie

Abstract Typically, the marine mollusk, Clione limacina, exhibits a slow, hovering locomotor gait to maintain its position in the water column. However, the animal exhibits behaviorally relevant locomotor swim acceleration during escape response and feeding behavior. Both nitric oxide and serotonin mediate this behavioral swim acceleration. In this study, we examine the role that the second messenger, cGMP, plays in mediating nitric oxide and serotonin-induced swim acceleration. We observed that the application of an analog of cGMP or an activator of soluble guanylyl cyclase increased fictive locomotor speed recorded from Pd-7 interneurons of the animal’s locomotor central pattern generator. Moreover, inhibition of soluble guanylyl cyclase decreased fictive locomotor speed. These results suggest that basal levels of cGMP are important for slow swimming and that increased production of cGMP mediates swim acceleration in Clione. Because nitric oxide has its effect through cGMP signaling and because we show herein that cGMP produces cellular changes in Clione swim interneurons that are consistent with cellular changes produced by serotonin application, we hypothesize that both nitric oxide and serotonin function via a common signal transduction pathway that involves cGMP. Our results show that cGMP mediates nitric oxide-induced but not serotonin-induced swim acceleration in Clione.


2020 ◽  
Vol 22 (1) ◽  
pp. 24
Author(s):  
Letizia Mezzasoma ◽  
Vincenzo Nicola Talesa ◽  
Rita Romani ◽  
Ilaria Bellezza

Dysregulated inflammasome activation and interleukin (IL)-1β production are associated with several inflammatory disorders. Three different routes can lead to inflammasome activation: a canonical two-step, a non-canonical Caspase-4/5- and Gasdermin D-dependent, and an alternative Caspase-8-mediated pathway. Natriuretic Peptides (NPs), Atrial Natriuretic Peptide (ANP) and B-type Natriuretic Peptide (BNP), binding to Natriuretic Peptide Receptor-1 (NPR-1), signal by increasing cGMP (cyclic guanosine monophosphate) levels that, in turn, stimulate cGMP-dependent protein kinase-I (PKG-I). We previously demonstrated that, by counteracting inflammasome activation, NPs inhibit IL-1β secretion. Here we aimed to decipher the molecular mechanism underlying NPs effects on THP-1 cells stimulated with lipopolysaccharide (LPS) + ATP. Involvement of cGMP and PKG-I were assessed pre-treating THP-1 cells with the membrane-permeable analogue, 8-Br-cGMP, and the specific inhibitor KT-5823, respectively. We found that NPs, by activating NPR-1/cGMP/PKG-I axis, lead to phosphorylation of NLRP3 at Ser295 and to inflammasome platform disassembly. Moreover, by increasing intracellular cGMP levels and activating phosphodiesterases, NPs interfere with both Gasdermin D and Caspase-8 cleavage, indicating that they disturb non-canonical and alternative routes of inflammasome activation. These results showed that ANP and BNP anti-inflammatory and immunomodulatory actions may involve the inhibition of all the known routes of inflammasome activation. Thus, NPs might be proposed for the treatment of the plethora of diseases caused by a dysregulated inflammasome activation.


2011 ◽  
Vol 89 (2) ◽  
pp. 89-95 ◽  
Author(s):  
Ercan Ozdemir ◽  
Ihsan Bagcivan ◽  
Nedim Durmus ◽  
Ahmet Altun ◽  
Sinan Gursoy

Although the phenomenon of opioid tolerance has been widely investigated, neither opioid nor nonopioid mechanisms are completely understood. The aim of the present study was to investigate the role of the nitric oxide (NO)–cyclic guanosine monophosphate (cGMP) pathway in the development of morphine-induced analgesia tolerance. The study was carried out on male Wistar albino rats (weighing 180–210 g; n = 126). To develop morphine tolerance, animals were given morphine (50 mg/kg; s.c.) once daily for 3 days. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated. The analgesic effects of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1), BAY 41-2272, S-nitroso-N-acetylpenicillamine (SNAP), NG-nitro-l-arginine methyl ester (L-NAME), and morphine were considered at 15 or 30 min intervals (0, 15, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests (n = 6 in each study group). The results showed that YC-1 and BAY 41-2272, a NO-independent activator of soluble guanylate cyclase (sGC), significantly increased the development and expression of morphine tolerance, and L-NAME, a NO synthase (NOS) inhibitor, significantly decreased the development of morphine tolerance. In conclusion, these data demonstrate that the nitric oxide–cGMP signal pathway plays a pivotal role in developing tolerance to the analgesic effect of morphine.


2010 ◽  
Vol 58 (4) ◽  
pp. 616-625 ◽  
Author(s):  
Romain Caremel ◽  
Stephanie Oger-Roussel ◽  
Delphine Behr-Roussel ◽  
Philippe Grise ◽  
François A. Giuliano

2000 ◽  
Vol 6 (5) ◽  
pp. 404-414 ◽  
Author(s):  
Irina A. Buhimschi ◽  
Chandreskar Yallampalli ◽  
Catalin S. Buhimschi ◽  
George R. Saade ◽  
Robert E. Garfield

2007 ◽  
Vol 107 (5) ◽  
pp. 822-842 ◽  
Author(s):  
Noboru Toda ◽  
Hiroshi Toda ◽  
Yoshio Hatano ◽  
David C. Warltier

There has been an explosive increase in the amount of interesting information about the physiologic and pathophysiologic roles of nitric oxide in cardiovascular, nervous, and immune systems. The possible involvement of the nitric oxide-cyclic guanosine monophosphate pathway in the effects of anesthetic agents has been the focus of many investigators. Relaxations of cerebral and peripheral arterial smooth muscle as well as increases in cerebral and other regional blood flows induced by anesthetic agents are mediated mainly via nitric oxide released from the endothelium and/or the nitrergic nerve and also via prostaglandin I2 or endothelium-derived hyperpolarizing factor. Preconditioning with volatile anesthetics protects against ischemia-reperfusion-induced myocardial dysfunction and cell death or neurotoxicity, possibly through nitric oxide release. Inhibition of nitric oxide synthase decreases the anesthetic requirement. Involvement of nitric oxide in the effects of volatile, intravenous, and local anesthetics differs. This review article includes a summary of information about the sites and mechanisms by which various anesthetic agents interact with the nitric oxide-cyclic guanosine monophosphate system.


Sign in / Sign up

Export Citation Format

Share Document