Review of snow water equivalent microwave remote sensing

2016 ◽  
Vol 59 (4) ◽  
pp. 731-745 ◽  
Author(s):  
JianCheng Shi ◽  
Chuan Xiong ◽  
LingMei Jiang
2019 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Ross Brown ◽  
...  

Abstract. Seven gridded northern hemisphere snow water equivalent (SWE) products were evaluated as part of the European Space Agency (ESA) Satellite Snow Product Inter-comparison and Evaluation Exercise (SnowPEx). Three categories of datasets were assessed: (1) those utilizing some form of reanalysis (the NASA Global Land Data Assimilation System version 2 – GLDAS; the European Centre for Medium-Range Forecasts interim land surface reanalysis – ERA-land; the NASA Modern-Era Retrospective Analysis for Research and Applications – MERRA; the Crocus snow model driven by ERA-Interim meteorology – Crocus); (2) passive microwave remote sensing combined with daily surface snow depth observations (ESA GlobSnow v2.0); and (3) standalone passive microwave retrievals (NASA AMSR-E historical and operational algorithms) which do not utilize surface snow observations. Evaluation included comparisons against independent surface observations from Russia, Finland, and Canada, and calculation of spatial and temporal correlations in SWE anomalies. The standalone passive microwave SWE products (AMSR-E historical and operational SWE algorithms) exhibit low spatial and temporal correlations to other products, and RMSE nearly double the best performing product. Constraining passive microwave retrievals with surface observations (GlobSnow) provides comparable performance to the reanalysis-based products; RMSEs over Finland and Russia for all but the AMSR-E products is ~50 mm or less. Using a four-dataset ensemble that excluded the standalone passive microwave products reduced the RMSE by 10 mm (20%) and increased the correlation by 0.1; ensembles that contain Crocus and/or MERRA perform better than those that do not. The observed RMSE of the best performing datasets is still at the margins of acceptable uncertainty for scientific and operational requirements; only through combined and integrated improvements in remote sensing, modeling, and observations will real progress in SWE product development be achieved.


2021 ◽  
Author(s):  
Leung Tsang ◽  
Michael Durand ◽  
Chris Derksen ◽  
Ana P. Barros ◽  
Do-Hyuk Kang ◽  
...  

Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 million square km of Earth's surface (31 % of the land area) each year, and is thus an important expression of and driver of the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ −13 %/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of snow stored on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations will not be able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high socio-economic value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, densities, and layering. We describe radar interactions with snow-covered landscapes, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-sensing from SAR measurements.


1987 ◽  
Vol 18 (1) ◽  
pp. 1-20 ◽  
Author(s):  
P. Y. Bernier

This review explores from a user's viewpoint the possibilities and limitations of microwave-based techniques for the remote sensing of snowpack properties. Mapping of dry snowpacks and detection of melt onset can be achieved with combinations of readings taken at different frequencies with passive microwave sensors. A combination of readings from both passive and active sensors coupled with ground truth data will be required to estimate snow water equivalent under most snow conditions. Snowpack structure and overlying vegetation still present major problems in the estimation of snowpack water equivalent from microwave remote sensing devices.


2017 ◽  
Author(s):  
Silvia Terzago ◽  
Jost von Hardenberg ◽  
Elisa Palazzi ◽  
Antonello Provenzale

Abstract. The estimate of the current and future conditions of snow resources in mountain areas depends on the availability of reliable, high resolution, regional observation-based gridded datasets and of climate models capable of properly representing snow processes and snow-climate interactions. Owing to the sparseness of station-based reference observations, in past decades mainly passive microwave remote sensing and reanalysis products have been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized. This work considers the available snow water equivalent datasets from remote sensing and from reanalyses for the Greater Alpine Region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyze the simulations from the regional and global climate models (RCMs, GCMs) participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the latest Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing snow water equivalent against the remote sensing and reanalysis datasets previously considered. The results of the analysis show that the distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and renalysis datasets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of RMSE and standard deviation than lower resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent that are locally much larger than those indicated by the gridded datasets but these differences are smoothed out when snow water equivalent is spatially averaged over the Alpine domain. ERA-Interim driven RCM simulations show a snow annual cycle comparable in amplitude to those provided by the reference datasets while GCM-driven RCMs present a large positive bias. The snow reduction expected by mid-21st century in the RCP 8.5 scenario is weaker in higher-resolution RCM simulations than in GCM runs.


2020 ◽  
Vol 21 (11) ◽  
pp. 2551-2564
Author(s):  
Ryan Gonzalez ◽  
Christian D. Kummerow

AbstractSnowfall and snowpack are tightly coupled within the snow water cycle and careful monitoring is crucial to better understand snow’s role in Earth’s water and energy cycles. Current and future estimates of the total amount of seasonal snow on the ground are limited by the variability in the initial snowfall and uncertainties in in situ and remote sensing observations. In this study, passive microwave remote sensing estimates of snowfall and snow water equivalent (SWE) from the Advanced Microwave Scanning Radiometer (AMSR-E) instrument are used to assess the consistency in the snow products. A snow evolution model, SnowModel, is employed to simulate snow processes that occur between the initial snowfall and subsequent SWE. AMSR-E is found to have significant discrepancies in both snowfall and SWE compared to MERRA-2 reanalysis and the Canadian Meteorological Centre (CMC) snow product. It is shown that AMSR-E snowfall is currently not a useful metric to estimate SWE without applying large corrections throughout the winter season. Regions of consistency in the AMSR-E snow products occur for reasons that pertain to underestimation in both snowfall and SWE. In addition to snow consistency, microwave brightness temperatures (TBs) are analyzed in response to the snowpack and snowfall physical properties. These experiments indicate significant sensitivity to regime-dependent scattering characteristics that must be accounted for to accurately estimate global snow properties and provide better physical consistency in the snow products from remote sensing platforms.


2020 ◽  
Vol 14 (5) ◽  
pp. 1579-1594 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Ross Brown ◽  
...  

Abstract. Nine gridded Northern Hemisphere snow water equivalent (SWE) products were evaluated as part of the European Space Agency (ESA) Satellite Snow Product Intercomparison and Evaluation Exercise (SnowPEx). Three categories of datasets were assessed: (1) those utilizing some form of reanalysis (the NASA Global Land Data Assimilation System version 2 – GLDAS-2; the European Centre for Medium-Range Weather Forecasts (ECMWF) interim land surface reanalysis – ERA-Interim/Land and ERA5; the NASA Modern-Era Retrospective Analysis for Research and Applications version 1 (MERRA) and version 2 (MERRA-2); the Crocus snow model driven by ERA-Interim meteorology – Crocus); (2) passive microwave remote sensing combined with daily surface snow depth observations (ESA GlobSnow v2.0); and (3) stand-alone passive microwave retrievals (NASA AMSR-E SWE versions 1.0 and 2.0) which do not utilize surface snow observations. Evaluation included validation against independent snow course measurements from Russia, Finland, and Canada and product intercomparison through the calculation of spatial and temporal correlations in SWE anomalies. The stand-alone passive microwave SWE products (AMSR-E v1.0 and v2.0 SWE) exhibit low spatial and temporal correlations to other products and RMSE nearly double the best performing product. Constraining passive microwave retrievals with surface observations (GlobSnow) provides performance comparable to the reanalysis-based products; RMSE over Finland and Russia for all but the AMSR-E products is ∼50 mm or less, with the exception of ERA-Interim/Land over Russia. Using a seven-dataset ensemble that excluded the stand-alone passive microwave products reduced the RMSE by 10 mm (20 %) and increased the correlation from 0.67 to 0.78 compared to any individual product. The overall performance of the best multiproduct combinations is still at the margins of acceptable uncertainty for scientific and operational requirements; only through combined and integrated improvements in remote sensing, modeling, and observations will real progress in SWE product development be achieved.


Sign in / Sign up

Export Citation Format

Share Document