Droplet creator based on electrowetting-on-dielectric for lab on a chip

2006 ◽  
Vol 49 (2) ◽  
pp. 248-256 ◽  
Author(s):  
Xuefeng Zeng ◽  
Ruifeng Yue ◽  
Jiangang Wu ◽  
Huan Hu ◽  
Liang Dong ◽  
...  
2019 ◽  
Vol 19 (19) ◽  
pp. 8597-8604 ◽  
Author(s):  
Kessararat Ugsornrat ◽  
Patiya Pasakon ◽  
Chanpen Karuwan ◽  
Chakrit Sriprachuabwong ◽  
Thitima Maturos ◽  
...  

Author(s):  
Sang Hyun Byun ◽  
Sung Kwon Cho

Recently, EWOD (Electrowetting on dielectric) has attracted a great deal of interest with applications of digital lab-on-a-chip in which microfluids are manipulated in a discrete form of droplets using electrical inputs. In most EWOD applications, the commonly used powering method is wired transmission, which may not be suitable for implantable lab-on-a-chip applications. In this paper, we will investigate wireless power transmission for EWOD utilizing the inductive coupling. Unlike the conventional inductive coupling, wireless EWOD requires a high voltage (> 50 V) at the receiver side which is connected to the EWOD chip since EWOD naturally operates under high input voltages. To satisfy this condition, the resonant inductive coupling method at a high resonant frequency is introduced and investigated. To optimize the transmission efficiency, we study the effects of many parameters such as the frequency, the inductance and the capacitance at the transmitter as well as receiver, the gap between the transmitter coil and receiver coil, and so on, by measuring the voltage at the receiver and the contact angle of droplets placed on wirelessly operated EWOD chip. In addition, by introducing amplitude modulation (AM) to the resonant inductive coupling, wireless AC electrowetting which generates droplet oscillations and is one of the commonly used operational modes is also achieved.


RSC Advances ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 4899-4906
Author(s):  
Hanbin Ma ◽  
Siyi Hu ◽  
Yuhan Jie ◽  
Kai Jin ◽  
Yang Su

A novel device configuration for an electrowetting-on-dielectric system with a floating top-electrode, which provides possibilities to enable a true lab-on-a-chip.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3126
Author(s):  
Kreeta Sukthang ◽  
Jantana Kampeera ◽  
Chakrit Sriprachuabwong ◽  
Wansika Kiatpathomchai ◽  
Eakkachai Pengwang ◽  
...  

Electrowetting-on-dielectric (EWOD) is a microfluidic technology used for manipulating liquid droplets at microliter to nanoliter scale. EWOD has the ability to facilitate the accurate manipulation of liquid droplets, i.e., transporting, dispensing, splitting, and mixing. In this work, EWOD fabrication with suitable and affordable materials is proposed for creating EWOD lab-on-a-chip platforms. The EWOD platforms are applied for the diagnosis of early mortality syndrome (EMS) in shrimp by utilizing the colorimetric loop-mediated isothermal amplification method with pH-sensitive xylenol orange (LAMP–XO) diagnosis technique. The qualitative sensitivity is observed by comparing the limit of detection (LOD) while performing the LAMP–XO diagnosis test on the proposed lab-on-a-chip EWOD platform, alongside standard LAMP laboratory tests. The comparison results confirm the reliability of EMS diagnosis on the EWOD platform with qualitative sensitivity for detecting the EMS DNA plasmid concentration at 102 copies in a similar manner to the common LAMP diagnosis tests.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
V. B. Varma ◽  
A. Ray ◽  
Z. M. Wang ◽  
Z. P. Wang ◽  
R. V. Ramanujan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pashupati R. Adhikari ◽  
Nishat T. Tasneem ◽  
Russell C. Reid ◽  
Ifana Mahbub

AbstractIncreasing demand for self-powered wearable sensors has spurred an urgent need to develop energy harvesting systems that can reliably and sufficiently power these devices. Within the last decade, reverse electrowetting-on-dielectric (REWOD)-based mechanical motion energy harvesting has been developed, where an electrolyte is modulated (repeatedly squeezed) between two dissimilar electrodes under an externally applied mechanical force to generate an AC current. In this work, we explored various combinations of electrolyte concentrations, dielectrics, and dielectric thicknesses to generate maximum output power employing REWOD energy harvester. With the objective of implementing a fully self-powered wearable sensor, a “zero applied-bias-voltage” approach was adopted. Three different concentrations of sodium chloride aqueous solutions (NaCl-0.1 M, NaCl-0.5 M, and NaCl-1.0 M) were used as electrolytes. Likewise, electrodes were fabricated with three different dielectric thicknesses (100 nm, 150 nm, and 200 nm) of Al2O3 and SiO2 with an additional layer of CYTOP for surface hydrophobicity. The REWOD energy harvester and its electrode–electrolyte layers were modeled using lumped components that include a resistor, a capacitor, and a current source representing the harvester. Without using any external bias voltage, AC current generation with a power density of 53.3 nW/cm2 was demonstrated at an external excitation frequency of 3 Hz with an optimal external load. The experimental results were analytically verified using the derived theoretical model. Superior performance of the harvester in terms of the figure-of-merit comparing previously reported works is demonstrated. The novelty of this work lies in the combination of an analytical modeling method and experimental validation that together can be used to increase the REWOD harvested power extensively without requiring any external bias voltage.


2021 ◽  
pp. 106985
Author(s):  
Cheng Tang ◽  
Yafeng Zhang ◽  
Conghui Dong ◽  
Jiaxin Yu ◽  
Jianping Lai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document