scholarly journals Electrode and electrolyte configurations for low frequency motion energy harvesting based on reverse electrowetting

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pashupati R. Adhikari ◽  
Nishat T. Tasneem ◽  
Russell C. Reid ◽  
Ifana Mahbub

AbstractIncreasing demand for self-powered wearable sensors has spurred an urgent need to develop energy harvesting systems that can reliably and sufficiently power these devices. Within the last decade, reverse electrowetting-on-dielectric (REWOD)-based mechanical motion energy harvesting has been developed, where an electrolyte is modulated (repeatedly squeezed) between two dissimilar electrodes under an externally applied mechanical force to generate an AC current. In this work, we explored various combinations of electrolyte concentrations, dielectrics, and dielectric thicknesses to generate maximum output power employing REWOD energy harvester. With the objective of implementing a fully self-powered wearable sensor, a “zero applied-bias-voltage” approach was adopted. Three different concentrations of sodium chloride aqueous solutions (NaCl-0.1 M, NaCl-0.5 M, and NaCl-1.0 M) were used as electrolytes. Likewise, electrodes were fabricated with three different dielectric thicknesses (100 nm, 150 nm, and 200 nm) of Al2O3 and SiO2 with an additional layer of CYTOP for surface hydrophobicity. The REWOD energy harvester and its electrode–electrolyte layers were modeled using lumped components that include a resistor, a capacitor, and a current source representing the harvester. Without using any external bias voltage, AC current generation with a power density of 53.3 nW/cm2 was demonstrated at an external excitation frequency of 3 Hz with an optimal external load. The experimental results were analytically verified using the derived theoretical model. Superior performance of the harvester in terms of the figure-of-merit comparing previously reported works is demonstrated. The novelty of this work lies in the combination of an analytical modeling method and experimental validation that together can be used to increase the REWOD harvested power extensively without requiring any external bias voltage.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir Muhammad Afzal ◽  
In-Gon Bae ◽  
Yushika Aggarwal ◽  
Jaewoo Park ◽  
Hye-Ryeon Jeong ◽  
...  

AbstractHybrid organic–inorganic perovskite materials provide noteworthy compact systems that could offer ground-breaking architectures for dynamic operations and advanced engineering in high-performance energy-harvesting optoelectronic devices. Here, we demonstrate a highly effective self-powered perovskite-based photodiode with an electron-blocking hole-transport layer (NiOx). A high value of responsivity (R = 360 mA W−1) with good detectivity (D = 2.1 × 1011 Jones) and external quantum efficiency (EQE = 76.5%) is achieved due to the excellent interface quality and suppression of the dark current at zero bias voltage owing to the NiOx layer, providing outcomes one order of magnitude higher than values currently in the literature. Meanwhile, the value of R is progressively increased to 428 mA W−1 with D = 3.6 × 1011 Jones and EQE = 77% at a bias voltage of − 1.0 V. With a diode model, we also attained a high value of the built-in potential with the NiOx layer, which is a direct signature of the improvement of the charge-selecting characteristics of the NiOx layer. We also observed fast rise and decay times of approximately 0.9 and 1.8 ms, respectively, at zero bias voltage. Hence, these astonishing results based on the perovskite active layer together with the charge-selective NiOx layer provide a platform on which to realise high-performance self-powered photodiode as well as energy-harvesting devices in the field of optoelectronics.


2020 ◽  
Author(s):  
Pashupati R. Adhikari ◽  
Nishat T. Tasneem ◽  
Dipon K. Biswas ◽  
Russell C. Reid ◽  
Ifana Mahbub

Abstract This paper presents a reverse electrowetting-on-dielectric (REWOD) energy harvester integrated with rectifier, boost converter, and charge amplifier that is, without bias voltage, capable of powering wearable sensors for monitoring human health in real-time. REWOD has been demonstrated to effectively generate electrical current at a low frequency range (< 3 Hz), which is the frequency range for various human activities such as walking, running, etc. However, the current generated from the REWOD without external bias source is insufficient to power such motion sensors. In this work, to eventually implement a fully self-powered motion sensor, we demonstrate a novel bias-free REWOD AC generation and then rectify, boost, and amplify the signal using commercial components. The unconditioned REWOD output of 95–240 mV AC is generated using a 50 μL droplet of 0.5M NaCl electrolyte and 2.5 mm of electrode displacement from an oscillation frequency range of 1–3 Hz. A seven-stage rectifier using Schottky diodes having a forward voltage drop of 135–240 mV and a forward current of 1 mA converts the generated AC signal to DC voltage. ∼3 V DC is measured at the boost converter output, proving the system could function as a self-powered motion sensor. Additionally, a linear relationship of output DC voltage with respect to frequency and displacement demonstrates the potential of this REWOD energy harvester to function as a self-powered wearable motion sensor.


Author(s):  
Jui-Ta Chien ◽  
Yung-Hsing Fu ◽  
Chao-Ting Chen ◽  
Shun-Chiu Lin ◽  
Yi-Chung Shu ◽  
...  

This paper proposes a broadband rotational energy harvesting setup by using micro piezoelectric energy harvester (PEH). When driven in different rotating speed, the PEH can output relatively high power which exhibits the phenomenon of frequency up-conversion transforming the low frequency of rotation into the high frequency of resonant vibration. It aims to power self-powered devices used in the applications, like smart tires, smart bearings, and health monitoring sensors on rotational machines. Through the excitation of the rotary magnetic repulsion, the cantilever beam presents periodically damped oscillation. Under the rotational excitation, the maximum output voltage and power of PEH with optimal impedance is 28.2 Vpp and 663 μW, respectively. The output performance of the same energy harvester driven in ordinary vibrational based excitation is compared with rotational oscillation under open circuit condition. The maximum output voltage under 2.5g acceleration level of vibration is 27.54 Vpp while the peak output voltage of 36.5 Vpp in rotational excitation (in 265 rpm).


2019 ◽  
Vol 20 (1) ◽  
pp. 90-99
Author(s):  
Aliza Aini Md Ralib ◽  
Nur Wafa Asyiqin Zulfakher ◽  
Rosminazuin Ab Rahim ◽  
Nor Farahidah Za'bah ◽  
Noor Hazrin Hany Mohamad Hanif

Vibration energy harvesting has been progressively developed in the advancement of technology and widely used by a lot of researchers around the world. There is a very high demand for energy scavenging around the world due to it being cheaper in price, possibly miniaturized within a system, long lasting, and environmentally friendly. The conventional battery is hazardous to the environment and has a shorter operating lifespan. Therefore, ambient vibration energy serves as an alternative that can replace the battery because it can be integrated and compatible to micro-electromechanical systems. This paper presents the design and analysis of a MEMS piezoelectric energy harvester, which is a vibration energy harvesting type. The energy harvester was formed using Lead Zicronate Titanate (PZT-5A) as the piezoelectric thin film, silicon as the substrate layer and structural steel as the electrode layer. The resonance frequency will provide the maximum output power, maximum output voltage and maximum displacement of vibration. The operating mode also plays an important role to generate larger output voltage with less displacement of cantilever. Some designs also have been studied by varying height and length of piezoelectric materials. Hence, this project will demonstrate the simulation of a MEMS piezoelectric device for a low power electronic performance. Simulation results show PZT-5A piezoelectric energy with a length of 31 mm and height of 0.16 mm generates maximum output voltage of 7.435 V and maximum output power of 2.30 mW at the resonance frequency of 40 Hz. ABSTRAK: Penuaian tenaga getaran telah berkembang secara pesat dalam kemajuan teknologi dan telah digunakan secara meluas oleh ramai penyelidik di seluruh dunia. Terdapat permintaan yang sangat tinggi di seluruh dunia terhadap penuaian tenaga kerana harganya yang lebih murah, bersaiz kecil dalam satu sistem, tahan lama dan mesra alam. Manakala, bateri konvensional adalah berbahaya bagi alam sekitar dan mempunyai jangka hayat yang lebih pendek. Oleh itu, getaran tenaga dari persekitaran lebih sesuai sebagai alternatif kepada bateri kerana ia mudah diintegrasikan dan serasi dengan sistem mikroelektromekanikal. Kertas kerja ini  membentangkan reka bentuk dan analisis tenaga piezoelektrik MEMS iaitu salah satu jenis penuaian tenaga getaran. Penuai tenaga ini dibentuk menggunakan Lead Zicronate Titanate (PZT-5A) sebagai lapisan filem tipis piezoelektrik, silikon sebagai lapisan substrat dan keluli struktur sebagai lapisan elektrod. Frekuensi resonans akan memberikan hasil tenaga maksima, voltan tenaga maksima dan getaran jarak maksima. Mod pengendalian juga memainkan peranan penting bagi menghasilkan tenaga yang lebih besar. Reka bentuk yang mempunyai ketinggian dan panjang berlainan juga telah diuji dengan menggunakan bahan piezoelektrik yang sama. Oleh itu, projek ini akan menghasilkan simulasi piezoelektrik MEMS yang sesuai digunakan bagi alat elektronik berkuasa rendah. Hasil simulasi menunjukkan dengan panjang 31 mm dan ketinggian 0.16 mm, piezoelektrik PZT ini menghasilkan voltan maksima sebanyak 7.435 V dan tenaga output maksima 2.30 mW pada frekuensi resonans 40 Hz.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 933 ◽  
Author(s):  
Hassan Elahi ◽  
Marco Eugeni ◽  
Federico Fune ◽  
Luca Lampani ◽  
Franco Mastroddi ◽  
...  

In the last few decades, piezoelectric (PZT) materials have played a vital role in the aerospace industry because of their energy harvesting capability. PZT energy harvesters (PEH) absorb the energy from an operational environment and can transform it into useful energy to drive nano/micro-electronic components. In this research work, a PEH based on the flag-flutter mechanism is presented. This mechanism is based on fluid-structure interaction (FSI). The flag is subjected to the axial airflow in the subsonic wind tunnel. The performance evaluation of the harvester and aeroelastic analysis is investigated numerically and experimentally. A novel solution is presented to extract energy from Limit Cycle Oscillations (LCOs) phenomenon by means of PZT transduction. The PZT patch absorbs the flow-induced structural vibrations and transforms it into electrical energy. Furthermore, the optimal resistance and length of the flag is predicted to maximize the energy harvesting. Different configurations of flag i.e., with Aluminium (Al) patch and PZT patch for flutter mode vibration mode are studied numerically and experimentally. The bifurcation diagram is constructed for the experimental campaign for the flutter instability of a cantilevered flag in subsonic wind-tunnel. Moreover, the flutter boundary conditions are analysed for reduced critical velocity and frequency. The designed PZT energy harvester via flag-flutter mechanism is suitable for energy harvesting in aerospace engineering applications to drive wireless sensors. The maximum output power that can be generated from the designed harvester is 6.72 mW and the optimal resistance is predicted to be 0.33 MΩ.


2018 ◽  
Vol 30 (8) ◽  
pp. 1705195 ◽  
Author(s):  
Ruiyuan Liu ◽  
Xiao Kuang ◽  
Jianan Deng ◽  
Yi-Cheng Wang ◽  
Aurelia C. Wang ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1444 ◽  
Author(s):  
Jae Han ◽  
Kwi-Il Park ◽  
Chang Jeong

Improvement of energy harvesting performance from flexible thin film-based energy harvesters is essential to accomplish future self-powered electronics and sensor systems. In particular, the integration of harvesting signals should be established as a single device configuration without complicated device connections or expensive methodologies. In this research, we study the dual-film structures of the flexible PZT film energy harvester experimentally and theoretically to propose an effective principle for integrating energy harvesting signals. Laser lift-off (LLO) processes are used for fabrication because this is known as the most efficient technology for flexible high-performance energy harvesters. We develop two different device structures using the multistep LLO: a stacked structure and a double-faced (bimorph) structure. Although both structures are well demonstrated without serious material degradation, the stacked structure is not efficient for energy harvesting due to the ineffectively applied strain to the piezoelectric film in bending. This phenomenon stems from differences in position of mechanical neutral planes, which is investigated by finite element analysis and calculation. Finally, effectively integrated performance is achieved by a bimorph dual-film-structured flexible energy harvester. Our study will foster the development of various structures in flexible energy harvesters towards self-powered sensor applications with high efficiency.


Sign in / Sign up

Export Citation Format

Share Document