Microfluidic mixing enhancement using electrokinetic instability under electric field perturbations in a double T-shaped microchannel

2009 ◽  
Vol 52 (4) ◽  
pp. 602-612 ◽  
Author(s):  
KaoFeng Yarn ◽  
ShouPing Hsu ◽  
WinJet Luo ◽  
HongJun Ye
2021 ◽  
Vol 925 ◽  
Author(s):  
Kaushlendra Dubey ◽  
Sanjeev Sanghi ◽  
Amit Gupta ◽  
Supreet Singh Bahga

We present an experimental and numerical investigation of electrokinetic instability (EKI) in microchannel flow with streamwise conductivity gradients, such as those observed during sample stacking in capillary electrophoresis. A plug of a low-conductivity electrolyte solution is initially sandwiched between two high-conductivity zones in a microchannel. This spatial conductivity gradient is subjected to an external electric field applied along the microchannel axis, and for sufficiently strong electric fields an instability sets in. We have explored the physics of this EKI through experiments and numerical simulations, and supplemented the results using scaling analysis. We performed EKI experiments at different electric field values and visualised the flow using a passive fluorescent tracer. The experimental data were analysed using the proper orthogonal decomposition technique to obtain a quantitative measure of the threshold electric field for the onset of instability, along with the corresponding coherent structures. To elucidate the physical mechanism underlying the instability, we performed high-resolution numerical simulations of ion transport coupled with fluid flow driven by the electric body force. Simulations reveal that the non-uniform electroosmotic flow due to axially varying conductivity field causes a recirculating flow within the low-conductivity region, and creates a new configuration wherein the local conductivity gradients are orthogonal to the applied electric field. This configuration leads to EKI above a threshold electric field. The spatial features of the instability predicted by the simulations and the threshold electric field are in good agreement with the experimental observations and provide useful insight into the underlying mechanism of instability.


Author(s):  
Zheyan Jin ◽  
Hui Hu

An experimental study was conducted to further our understanding about the fundamental physics of electrokinetic instability (EKI) and to explore the effectiveness to enhance fluid mixing inside a Y-shaped microchannel by manipulating convective EKI waves. The dependence of the critical voltage of applied static electric field to trig EKI to generate convective EKI waves on the conductivity ratio of the two adjacent streams was quantified at first. The effect of the strength of the applied static electric field on the evolution of the convective EKI waves and fluid mixing process were assessed in terms of scalar concentration fields, shedding frequency of the convective EKI waves and scalar mixing efficiency. The effectiveness of manipulating the convective EKI waves by introducing alternative electric perturbations to the applied static electric fields was also explored for the further enhancement of the fluid mixing process inside the Y-shaped microchannel.


2018 ◽  
Vol 32 (12n13) ◽  
pp. 1840030 ◽  
Author(s):  
J. W. Wu ◽  
H. M. Xia ◽  
Y. Y. Zhang ◽  
P. Zhu

Fluid mixing in miniaturized fluidic devices is a challenging task. In this work, the mixing enhancement through oscillatory transverse perturbations coupling with divergent circular chambers is studied. To simplify the design, an autonomous microfluidic oscillator is used to produce the oscillatory flow. It is then applied to four side-channels that intersect with a central channel of constant flow. The mixing performance is tested at high fluid viscosities of up to 16 cP. Results show that the oscillatory flow can cause strong transverse perturbations which effectively enhance the mixing. The influence of a fluidic capacitor in the central channel is also examined, which at low viscosities can intensify the perturbations and further improve the mixing.


2009 ◽  
Vol 60-61 ◽  
pp. 330-333
Author(s):  
Wei Chih Chen ◽  
Ting Fu Hong ◽  
Wen Bo Luo ◽  
Chang Hsien Tai ◽  
Chien Hsiung Tsai ◽  
...  

This paper presented a parametric experimental study of electrokinetic instability phenomena in a cross-shaped configuration microfluidic device with varying channel depths and conductivity ratios. The flow instability is observed when applied electric field strength exceeds a certain critical value. The critical electric field strength is examined as a function of the conductivity ratio of two samples liquid, microchannel depth, and the treatment of microchannel wetted surface. It is found that the critical electric field strengths for the onset of electrokinetic instability are strongly dependent on the conductivity ratio of two samples liquid, and decrease as the channel depths increasing of microfluidic devices. In the present study, the surface inside microchannels is treated utilizing hydrophilic and hydrophobic organic-based SOG (spin-on-glass) nanofilms for glass-based microchips. The experimental results indicate that no significant difference for the critical electric fields for the onset of electrokinetic instability phenomena in both hydrophilic and hydrophobic SOG coating in the surface of microchannels. The critical electric fields for the onset of electrokinetic instability phenomena are slightly lower in both SOG coated cases in compare with that of the non-coated microchannel.


2012 ◽  
Vol 16 (5) ◽  
pp. 1534-1538 ◽  
Author(s):  
Kai Zhang ◽  
Xiao-Jing Mi ◽  
Ming-Zhou Yu

The super-efficient sample mixing induced by the induced-charge electrokinetic flow around conducting/Janus cylinder was numerically studied in a confined |U-shaped microchannel with suddenly applied DC weak electric filed. It?s found that there are four large circulations around the conducting cylinder and two smaller circulations around the Janus cylinder. The results show that samples can still be well mixed with high flux due to the induced electroosmosis. It is demonstrated that the local flow circulations provide effective means to enhance the flow mixing between different solutions. The dependence of the degree of mixing enhancement on the electric field is also predicted.


2004 ◽  
Vol 127 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Kazuyoshi Fushinobu ◽  
Masashi Nakata

A microfluidic mixing device for microsystems with electroosmotic flow (EOF)-driven liquid pumping is proposed and examined experimentally and numerically. Microchannels with SiO2 or Al2O3 wall are fabricated by using surface micromachining technique, and the EOF velocity for each microchannel is measured. A sample device where part of the SiO2 wall is covered with a patterned Al2O3 thin film is fabricated to demonstrate the proposed flow pattern change. Results of numerical calculations suggest mixing enhancement effect.


Sign in / Sign up

Export Citation Format

Share Document