static electric fields
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
pp. 2100723
Author(s):  
Itsuki Shoji ◽  
Hideki Wada ◽  
Kodai Uto ◽  
Yasunori Takeda ◽  
Toshiyuki Sugimoto ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Long Zhang ◽  
Xiaohua Yang ◽  
Shun Li ◽  
JianMing Zhang

Oriented external electric fields are now emerging as “smart effectors” of chemical changes. The key challenges in experimentally studying electrostatic catalysis are (i) controlling the orientation of fields along the reaction axis and (ii) finely adjusting the magnitudes of electrostatic stimuli. Surface models provide a versatile platform for addressing the direction of electric fields with respect to reactants and balancing the trade-off between the solubility of charged species and the intensity of electric fields. In this mini-review, we present the recent advances that have been investigated of the electrostatic effect on the chemical reaction on the monolayer-functionalized silicon surfaces. We mainly focus on elucidating the mediator/catalysis role of static electric fields induced from either solid/liquid electric double layers at electrode/electrolyte interfaces or space charges in the semiconductors, indicating the electrostatic aspects is of great significance in the semiconductor electrochemistry, redox electroactivity, and chemical bonding. Herein, the functionalization of silicon surfaces allows scientists to explore electrostatic catalysis from nanoscale to mesoscale; most importantly, it provides glimpses of the wide-ranging potentials of oriented electric fields for switching on/off the macroscale synthetic organic electrochemistry and living radical polymerization.


2021 ◽  
Vol 118 (29) ◽  
pp. e2022000118
Author(s):  
Endao Han ◽  
Lailai Zhu ◽  
Joshua W. Shaevitz ◽  
Howard A. Stone

In the limit of zero Reynolds number (Re), swimmers propel themselves exploiting a series of nonreciprocal body motions. For an artificial swimmer, a proper selection of the power source is required to drive its motion, in cooperation with its geometric and mechanical properties. Although various external fields (magnetic, acoustic, optical, etc.) have been introduced, electric fields are rarely utilized to actuate such swimmers experimentally in unbounded space. Here we use uniform and static electric fields to demonstrate locomotion of a biflagellated sphere at low Re via Quincke rotation. These Quincke swimmers exhibit three different forms of motion, including a self-oscillatory state due to elastohydrodynamic–electrohydrodynamic interactions. Each form of motion follows a distinct trajectory in space. Our experiments and numerical results demonstrate a method to generate, and potentially control, the locomotion of artificial flagellated swimmers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ross C. C. Leon ◽  
Chih Hwan Yang ◽  
Jason C. C. Hwang ◽  
Julien Camirand Lemyre ◽  
Tuomo Tanttu ◽  
...  

AbstractAn error-corrected quantum processor will require millions of qubits, accentuating the advantage of nanoscale devices with small footprints, such as silicon quantum dots. However, as for every device with nanoscale dimensions, disorder at the atomic level is detrimental to quantum dot uniformity. Here we investigate two spin qubits confined in a silicon double quantum dot artificial molecule. Each quantum dot has a robust shell structure and, when operated at an occupancy of 5 or 13 electrons, has single spin-$$\frac{1}{2}$$ 1 2 valence electron in its p- or d-orbital, respectively. These higher electron occupancies screen static electric fields arising from atomic-level disorder. The larger multielectron wavefunctions also enable significant overlap between neighbouring qubit electrons, while making space for an interstitial exchange-gate electrode. We implement a universal gate set using the magnetic field gradient of a micromagnet for electrically driven single qubit gates, and a gate-voltage-controlled inter-dot barrier to perform two-qubit gates by pulsed exchange coupling. We use this gate set to demonstrate a Bell state preparation between multielectron qubits with fidelity 90.3%, confirmed by two-qubit state tomography using spin parity measurements.


2021 ◽  
Author(s):  
Adam Masters ◽  
William Dunn ◽  
Tom Stallard ◽  
Harry Manners ◽  
Julia Stawarz

<p>Charged particles impacting Jupiter’s atmosphere represent a major energy input, generating the most powerful auroral emissions in the Solar System. Most auroral features have now been explained as the result of impacting particles accelerated by quasi-static electric fields and/or wave-particle interactions in the surrounding space environment. However, the reason for Jupiter’s bright and dynamic polar regions remains a long-standing mystery. Recent spacecraft observations above these regions of “swirl” auroras have shown that high-energy electrons are regularly beamed away from the planet, which is inconsistent with traditional auroral drivers. The unknown downward-electron-acceleration mechanism operating close to Jupiter represents a gap in our fundamental understanding of planetary auroras. Here we propose a possible explanation for both the swirl auroras and the upward electron beams. We show that the perturbations of Jupiter’s strong magnetic field above the swirl regions that are driven by dynamics of the distant space environment can cause magnetic reconnection events at altitudes as low as ~0.2 Jupiter radii, rapidly releasing energy and potentially producing both the required downward and observed upward beams of electrons. Such an auroral driver has never before been postulated, resembling physics at work in the solar corona.</p>


Author(s):  
Lynn B. Wilson ◽  
Li-Jen Chen ◽  
Vadim Roytershteyn

Recent time series observations of electric fields within collisionless shocks have shown that the fluctuating, electrostatic fields can be in excess of one hundred times that of the quasi-static electric fields. That is, the largest amplitude electric fields occur at high frequencies, not low. In contrast, many if not most kinetic simulations show the opposite, where the quasi-static electric fields dominate, unless they are specifically tailored to examine small-scale instabilities. Further, the shock ramp thickness is often observed to fall between the electron and ion scales while many simulations tend to produce ramp thicknesses at least at or above ion scales. This raises numerous questions about the role of small-scale instabilities and about the ability to directly compare simulations with observations.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 283
Author(s):  
Alessandro Tomasino ◽  
Riccardo Piccoli ◽  
Yoann Jestin ◽  
Boris Le Drogoff ◽  
Mohamed Chaker ◽  
...  

We present an innovative implementation of the solid-state-biased coherent detection (SSBCD) technique, which we have recently introduced for the reconstruction of both amplitude and phase of ultra-broadband terahertz pulses. In our previous works, the SSBCD method has been operated via a heterodyne scheme, which involves demanding square-wave voltage amplifiers, phase-locked to the THz pulse train, as well as an electronic circuit for the demodulation of the readout signal. Here, we demonstrate that the SSBCD technique can be operated via a very simple homodyne scheme, exploiting plain static bias voltages. We show that the homodyne SSBCD signal turns into a bipolar transient when the static field overcomes the THz field strength, without the requirement of an additional demodulating circuit. Moreover, we introduce a differential configuration, which extends the applicability of the homodyne scheme to higher THz field strengths, also leading a two-fold improvement of the dynamic range compared to the heterodyne counterpart. Finally, we demonstrate that, by reversing the sign of the static voltage, it is possible to directly retrieve the absolute THz pulse polarity. The homodyne configuration makes the SSBCD technique of much easier access, leading to a vast range of field-resolved applications.


2021 ◽  
Vol 762 ◽  
pp. 138139 ◽  
Author(s):  
Qi-Lin Zhang ◽  
Ya-Xian Wu ◽  
Rong-Yao Yang ◽  
Jin-Lun Zhang ◽  
Rui-Feng Wang

Sign in / Sign up

Export Citation Format

Share Document