In situ Re-Os isotope ages of sulfides in Hannuoba peridotitic xenoliths: Significance for the frequently-occurring mantle events beneath the North China Block

2007 ◽  
Vol 52 (20) ◽  
pp. 2847-2853 ◽  
Author(s):  
ChunMei Yu ◽  
JianPing Zheng ◽  
W. L. Griffin
2020 ◽  
Vol 35 (2) ◽  
Author(s):  
Dawei Lv ◽  
Wengui Fan ◽  
John I. Ejembi ◽  
Dun Wu ◽  
Dongdong Wang ◽  
...  

2011 ◽  
Vol 11 (11) ◽  
pp. 31137-31158 ◽  
Author(s):  
W. Y. Xu ◽  
C. S. Zhao ◽  
P. F. Liu ◽  
L. Ran ◽  
N. Ma ◽  
...  

Abstract. Emission information is crucial for air quality modelling and air quality management. In this study, a new approach based on the understanding of the relationship between emissions and measured pollutant concentrations has been proposed to estimate pollutant emissions and source contributions. The retrieval can be made with single point in-situ measurements combined with backward trajectory analyses. The method takes into consideration the effect of meteorology on pollutant transport when evaluating contributions and is independent of energy statistics, therefore can provide frequent updates on emission information. The spatial coverage can be further improved by using measurements from several sites and combining the derived emission fields. The method was applied to yield the source distributions of black carbon (BC) and CO in the North China Plain (NCP) using in-situ measurements from the HaChi (Haze in China) Campaign and to evaluate contributions from specific areas to local concentrations at the measurement site. Results show that this method can yield a reasonable emission field for the NCP and can directly quantify areal source contributions. Major BC and CO emission source regions are Beijing, the western part of Tianjin and Langfang, Hebei, with Tangshan being an additional important CO emission source area. The source contribution assessment suggests that, aside from local emissions in Wuqing, Tianjin and Hebei S, SW (d < 100 km) are the greatest contributors to measured local concentrations, while emissions from Beijing contribute little during summertime.


Lithos ◽  
2018 ◽  
Vol 302-303 ◽  
pp. 496-518 ◽  
Author(s):  
Qi-Qi Zhang ◽  
Shuan-Hong Zhang ◽  
Yue Zhao ◽  
Jian-Min Liu

Lithos ◽  
2020 ◽  
Vol 364-365 ◽  
pp. 105478 ◽  
Author(s):  
Dongya Zou ◽  
Hongfu Zhang ◽  
Xiaoqi Zhang ◽  
Huiting Zhang ◽  
Benxun Su

Sign in / Sign up

Export Citation Format

Share Document