taiyuan formation
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 36)

H-INDEX

8
(FIVE YEARS 4)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
L. Zhang ◽  
Q. Zhao ◽  
C. Wu ◽  
Z. Qiu ◽  
Q. Zhang ◽  
...  

In the Ordos Basin, multiple sets of coal seams, organic-rich shale, and limestone are well developed in the Permian Taiyuan Formation, which are favorable targets for collaborative exploration of various types of unconventional natural gas resources, including coalbed methane, shale gas, and tight gas. In this study, core samples from the Permian Taiyuan Formation in the eastern margin of the Ordos Basin were used to carry out a series of testing and analysis, such as the organic matter characteristics, the mineral composition, and the pore development characteristics. In the shale of the Taiyuan Formation, the total organic carbon (TOC) content is relatively high, with an average of 5.38%. A thin layer of black shale is developed on the top of the Taiyuan Formation, which is relatively high in TOC content, with an average of 9.72%. The limestone in the Taiyuan Formation is also relatively high in organic matter abundance, with an average of 1.36%, reaching the lower limit of effective source rocks (>1%), being good source rocks. In the shale of the Taiyuan Formation, various types of pores are well developed, with relatively high overall pore volume and pore-specific surface area, averaging 0.028 ml/g and 13.28 m2/g, respectively. The pore types are mainly mineral intergranular pores and clay mineral interlayer fractures, while organic matter-hosted pores are poorly developed. The limestone of the Taiyuan Formation is relatively tight, with lower pore volume and pore-specific surface area than those of shale, averaging 0.0106 ml/g and 2.72 m2/g, respectively. There are mainly two types of pores, namely, organic matter-hosted pores and carbonate mineral dissolution pores, with a high surface pore rate. The organic matter in the limestone belongs to the oil-generation kerogen. During thermal evolution, the organic matter has gone through the oil-generation window, generating a large number of liquid hydrocarbons, which were cracked into a large number of gaseous hydrocarbons at the higher mature stage. As a result, a large number of organic matter-hosted pores were generated. The study results show that in the Ordos Basin, the shale and limestone of the Permian Taiyuan Formation have great potential in terms of unconventional natural gas resources, providing a good geological basis for the collaborative development of coal-bearing shale gas and tight limestone gas in the Taiyuan Formation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
H. Wang ◽  
L. Zhang ◽  
Q. Zhao ◽  
Z. Qiu ◽  
D. Liu ◽  
...  

The pore types and pore structure parameters of the heterogenetic shale will affect the percolation and reservoir properties of shale; therefore, the research on these parameters is very important for shale reservoir evaluation. We used X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), low-pressure CO2 adsorption analysis, mercury injection capillary pressure (MICP), and high-pressure methane adsorption analysis to analyze the characteristics of different pore types and their parameters of the Lower Permian Shanxi Formation and Taiyuan Formation in the Ordos Basin. The influence of different mineral contents on the porosity and pore size is also investigated. The Shanxi Formation (SF) is composed of quartz (average of 38.4%), plagioclase, siderite, Fe-dolomite, calcite, pyrite, and clay minerals (average of 50.1%), while the Taiyuan Formation (TF) is composed of calcite (average of 37%), siderite, Fe-dolomite, quartz, pyrite, and clay minerals (average of 32.3%). The most common types of pores observed in this formation are interparticle pores (InterP pores), intraparticle pores (IntraP pores), interclay pores, intercrystalline pores (InterC pores), organic matter pores (OM pores), and microfractures. CO2 adsorption analysis demonstrates the type I physisorption isotherms, showing microporous solids having comparatively small external surfaces. The similar types of isothermal shapes of the Shanxi Formation (SF) and Taiyuan Formation (TF) suggest that both types have similar pore size distribution (PSD) within the measured pore range by the low-pressure CO2 adsorption experiment. The micropore pore size of the TF is larger than that of the SF. MICP shows the larger pores (>50 nm), and most of the volume was adsorbed by macropores. Methane gas sorption capacity increases with increasing pressure. Clay minerals and quartz played an important role in providing adsorption sites for methane gas. The overall analysis of both formations shows that TF has good reservoir properties than SF.


2021 ◽  
pp. 1-17
Author(s):  
Jun Li ◽  
Herong Gui ◽  
Luwang Chen ◽  
Pei Fang ◽  
Xiaoping Li ◽  
...  

Abstract During the late Palaeozoic Era, a series of related marine strata dominated by multi-layer limestones were deposited in the southern North China Craton. In order to gain new insights into the systematic geochemistry of the carbonate succession of the representative formation (Taiyuan Formation), we examined 59 limestone samples collected from the Huaibei Coal Basin (HCB), with a view towards quantitatively determining the major and trace elements and stable isotope compositions. The data obtained can provide essential evidence for reconstruction of the depositional palaeo-environment and tectonic setting of the Taiyuan Formation. Both X-ray diffraction analyses and palaeoredox proxies (e.g. V/Cr, V/(V + Ni) and authigenic U) indicated that the limestone layers were deposited in an oxic–dysoxic zone, with calcite as the main component. Moreover, palaeomagnetic evidence provided support for the conclusion that these limestones were laid down within an epicontinental sea depositional environment under a warm or hot palaeoclimate during the transition between late Carboniferous and early Permian time. Additionally, evidence obtained from our analyses of trace and rare earth elements revealed that the tectonic setting of the Taiyuan Formation (L1–L5) in the HCB transited from an open ocean to a passive continental margin, thereby indicating that this transformation stemmed from the subduction closure of the northeastern Palaeotethys Ocean. The findings of this study would be of interest to those working on the upper Palaeozoic marine strata in the southern North China Craton.


Author(s):  
Qiuchen Xu ◽  
Haizhou Wang ◽  
Ruiliang Guo ◽  
Peng Liu ◽  
Dishi Shi ◽  
...  

AbstractPore structural characteristics and methane adsorption capacity are two significant aspects affecting shale gas potential, but the impact of deposition and burial processes on these two aspects is not clear. Hence, the shale samples of Taiyuan Formation deposited continuously and experienced multi-stage tectonic uplift in Fuyang-Bozhou area of Southern North China Basin were collected in this study. Based on the total organic carbon content analysis, mineral composition determination, low-pressure CO2 and N2 adsorption, high-pressure methane adsorption and argon ion polishing-field emission scanning electron microscope observation. The impact of depositional and burial processes variation on shale reservoir physical properties and adsorption performance is studied. The results display that the pore types of shale samples which were continues deposited and experienced multi-stage tectonic uplift have no obvious differences, while the pore volume as well as specific surface area (SSA) of micropores and mesopores of shale samples under multi-stage tectonic uplift are larger significantly. Meanwhile, the roughness of shale pores increases also. The decrease of loading pressure caused by multi-stage tectonic uplift may be the main factor for the pore structure changes of shale sample. Compared with the continuous deposited samples, the shale samples under multi-stage tectonic uplift have stronger methane adsorption capacity, which is relevant to the greater SSA of micropores as well as mesopores. This study provides an example and new revelation for the influence of depositional and burial processes on shale pore structure and methane adsorption capacity.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jimei Deng ◽  
Huan Zeng ◽  
Peng Wu ◽  
Jia Du ◽  
Jixian Gao ◽  
...  

Research on tight gas reservoirs in the eastern margin of the Ordos Basin, China, has recently become a hot spot. This paper mainly studies the reservoir characteristics of tight sandstone in the north-central area close to the provenance in eastern Linxing. Cast thin section, scanning electron microscopy, high-pressure mercury injection, and X-ray diffraction (XRD) were applied to discriminate the tight sandstone reservoir differences between the Permian Taiyuan and Shanxi formations in the study area. The results show that the deltaic tight sandstones in the Shanxi Formation are dominated by lithic quartz sandstone and lithic sandstone with an average porosity of 2.3% and permeability of 0.083 mD. The epicontinental tight sandstones in the Taiyuan Formation are mainly lithic sandstone and lithic quartz sandstone, with average porosities and permeabilities of 6.9% and 0.12 mD, respectively. The pore type is dominated by secondary dissolution pores, containing a small number of primary pores, and fractures are not developed. The capillary pressure curves of the Taiyuan Formation sandstone are mainly of low displacement pressure, high mercury saturation, and mercury withdrawal efficiency, while the Shanxi Formation sandstone is mainly of high displacement pressure, low mercury saturation, and withdrawal efficiency. The diagenetic evolution of sandstone in the Shanxi Formation is in meso-diagenesis stage A, and the Taiyuan Formation has entered meso-diagenesis stage B. The siliceous cement in the Taiyuan Formation sandstone enhanced the sandstone resistance to compaction and retained some residual intergranular pores. The pore types in the Shanxi Formation sandstone are all secondary pores, while secondary pores in the Taiyuan Formation sandstone account for approximately 90%. The results can be beneficial for tight gas production in the study area and similar basins.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Cuifang ◽  
Huang Xinglong ◽  
Shao Yubao ◽  
Dou Fengke

The shale layers of the Permian Shanxi Formation and Taiyuan Formation in the southwestern part of Shandong Province are marine-continental transitional sedimentary facies. When compared with the Ordos Basin, which was a typical breakthrough in marine-continental transitional shale gas exploration, the geological characteristics, exploration, and development prospects of marine-continental transitional shale gas in the southwestern section of Shandong Province are more defined. The shale gas deposits of the Shanxi and Taiyuan Formations in southwestern Shandong Province have the following geological characteristics. The sedimentary environments of Shanxi and Taiyuan Formations are considered to be stable and characterized with widely distributed organic-rich shale, which can be used as composite evaluation layers. The total thickness of the shale range is between 140 and 350 m, with an average of 230 m. The main types of organic matter in the Shanxi Formation are Type Ⅲ and Type Ⅱ2 kerogen, while the main types of organic matter in the Taiyuan Formation are rock types. The abundance and maturity of the organic matter are high, and the gas generating capacity is strong. The reservoir rock mineral composition is complex in the region. The clay mineral content is relatively high and the brittle mineral content is rich. Also, the shale fracturing ability is good. The region has the characteristics of a low porosity and low permeability reservoir, with relatively good reservoir capacity. Three primary points of interest have stably been developed within the region, which are located in the upper high water level system, near the initial flood surface, and the majority of flood surface, including a transgressive system tract and high level system tract. The total gas content is estimated to range between 0.03 and 4.47 m3/t, with an average of 0.30 m3/t. The shale gas resources are rich, including one favorable Class I location with an area of 819.06 km2 and a resource amount of 985.84 × 108 m3; four favorable Class Ⅱ locations with an area of 1,979.68 km2 and a resource amount of 2,278.14 × 108 m3; and five prospective locations with an area of 8,385.52 km2 and a resource amount of 7,299.48 × 108 m3. Therefore, the region was considered to have major exploration potential.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Weitao Liu ◽  
Jie Yu ◽  
Jianjun Shen ◽  
Qiushuang Zheng ◽  
Mengke Han ◽  
...  

In order to explore the law of groundwater evolution, the water source connection between faults and aquifers and the main sources of mine water inrush in the deep mining area of Yangcheng Coal Mine in Jining City, 40 groups of hydrochemical samples were collected and analyzed by Piper Diagram and Durov Diagram. The results showed that the fluidity of groundwater developing to the deep became weaker, the value of total dissolved solids (TDS) became larger. So, the roof and floor of coal seam were more similar in water quality types due to the conduction of faults. Using principal component analysis (PCA) to the raw data, two principal components were extracted, and the principal component scores were used as clustering variables for hierarchical cluster analysis (HCA), 5 groups of abnormal water samples were eliminated and 3 clustering groups M1, M2 and M3 were obtained from the other water samples on the tree diagram. The results showed that the combination of HCA and hydrochemical analysis was more effective in screening water samples, and the 3 clustering groups could be qualified samples to represent 3 major aquifers (Taiyuan Formation limestone aquifer, Shanxi Formation sandstone aquifer and Ordovician limestone aquifer). Finally, taking M1, M2 and M3 as grouping variables, the discriminant functions f 1 , f 2 and f 3 of the 3 aquifers were obtained, the results of stepwise discrimination analysis (SDA) showed that the discrimination model established by using 25 groups of standard water samples could discriminate the known water samples with the correct rate of 96%, 10 groups of unknown water samples collected at the fault are identified as Taiyuan Formation limestone water samples, which was consistent with the classification results of HCA, proving that the water inrush of fault DF53 was from Taiyuan Formation limestone aquifer, while the fault had little influence on Ordovician limestone aquifer.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


Sign in / Sign up

Export Citation Format

Share Document