scholarly journals Evaluation of farmland losses from sea level rise and storm surges in the Pearl River Delta region under global climate change

2016 ◽  
Vol 26 (4) ◽  
pp. 439-456 ◽  
Author(s):  
Lei Kang ◽  
Li Ma ◽  
Yi Liu
2019 ◽  
Vol 39 (6) ◽  
pp. 2984-2997 ◽  
Author(s):  
Yongli Wang ◽  
Allen Chan ◽  
Gabriel Ngar‐Cheung Lau ◽  
Qingxiang Li ◽  
Yuanjian Yang ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 567 ◽  
Author(s):  
Yahui Guo ◽  
Wenxiang Wu ◽  
Mingzhu Du ◽  
Xiaoxuan Liu ◽  
Jingzhe Wang ◽  
...  

In this study, the potential climate change impacts on rice growth and rice yield under 1.5 and 2.0 °C warming scenarios, respectively, are simulated using the Ceres-Rice Model based on high-quality, agricultural, experimental, meteorological and soil data, and the incorporation of future climate data generated by four Global Climate Models (GCMs) in the Pearl River Delta, China. The climatic data is extracted from four Global Climate Models (GCMs) namely: The Community Atmosphere Model 4 (CAM4), The European Centre for Medium-Range Weather Forecasts-Hamburg 6 (ECHAM6), Model for Interdisciplinary Research On Climate 5 (MIROC5) and the Norwegian Earth System Model 1 (NorESM1). The modeling results show that climate change has major negative impacts on both rice growth and rice yields at all study sites. More specifically, the average of flowering durations decreases by 2.8 days (3.9 days), and the maturity date decreases by 11.0 days (14.7 days) under the 1.5 °C and (2.0 °C) warming scenarios, respectively. The yield for early mature rice and late mature rice are reduced by 292.5 kg/ha (558.9 kg/ha) and 151.8 kg/ha (380.0 kg/ha) under the 1.5 °C (2.0 °C) warming scenarios, respectively. Adjusting the planting dates of eight days later and 15 days earlier for early mature rice and late mature rice are simulated to be adaptively effective, respectively. The simulated optimum fertilizer amount is about 240 kg/ha, with different industrial fertilizer and organic matter being applied.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yihan Tang ◽  
Shufeng Xi ◽  
Xiaohong Chen ◽  
Yanqing Lian

Coastal flood regimes have been irreversibly altered by both climate change and human activities. This paper aims to quantify the impacts of multiple factors on delta flood. The Pearl River Delta (PRD), with dense river network and population, is one of the most developed coastal areas in China. The recorded extreme water level (m.s.l.) in flood season has been heavily interfered with by varied income flood flow, sea-level rise, and dredged riverbeds. A methodology, composed of a numerical model and the indexR, has been developed to quantify the impacts of these driving factors in the the PRD. Results show that the flood level varied 4.29%–53.49% from the change of fluvial discharge, 3.35%–38.73% from riverbed dredging, and 0.12%–16.81% from sea-level rise. The variation of flood flow apparently takes the most effect and sea-level rise the least. In particular, dense river network intensifies the impact of income flood change and sea-level rise. Findings from this study help understand the causes of the the PRD flood regimes and provide theoretical support for flood protection in the delta region.


2018 ◽  
Vol 193 ◽  
pp. 79-87 ◽  
Author(s):  
Cheuk Hei Marcus Tong ◽  
Steve Hung Lam Yim ◽  
Daniel Rothenberg ◽  
Chien Wang ◽  
Chuan-Yao Lin ◽  
...  

Author(s):  
Xianwei Wang ◽  
Yu Guo ◽  
Jie Ren

AbstractThe low-lying Pearl River Delta in South China is subject to severe flood threats due to watershed floods, sea level rise, and storm surges. It is still unknown to what extent and how far inland storm surges and sea level rise impact the extreme flood stages. This study investigated the coupling effect of flood discharge and storm surge on the extreme flood stages in the Pearl River Delta by using on site observations and simulations generated by the Hydrologic Engineering Center-River Analysis System model. The results show that flood discharges dominated the flood stages in the middle and upper Pearl River Delta, while the storm surges had maximum impact near the river mouth. The storm surges and flood stages showed a significant increase after 2002 in the Hengmen waterway. The design flood stages for the post-2002 period were 0.23–0.89 m higher than the pre-2002 ones at Hengmen at the six return periods from 5 to 200 years examined in this study. Their difference declined toward the upper waterway and reduced to zero about 23 km away from the Hengmen outlet. The coincidence of extreme flood discharges and storm surges further escalates the extreme flood stages in the lower 30 km of estuarine waterways. Our results quantify the severe threats due to sea level rise and intensified storm surges in the lower Pearl River Delta, and are significant for urban planning and designing and managing flood control facilities in the Pearl River Delta and in other coastal fluvial deltas.


Sign in / Sign up

Export Citation Format

Share Document