scholarly journals Modeling Climate Change Impacts on Rice Growth and Yield under Global Warming of 1.5 and 2.0 °C in the Pearl River Delta, China

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 567 ◽  
Author(s):  
Yahui Guo ◽  
Wenxiang Wu ◽  
Mingzhu Du ◽  
Xiaoxuan Liu ◽  
Jingzhe Wang ◽  
...  

In this study, the potential climate change impacts on rice growth and rice yield under 1.5 and 2.0 °C warming scenarios, respectively, are simulated using the Ceres-Rice Model based on high-quality, agricultural, experimental, meteorological and soil data, and the incorporation of future climate data generated by four Global Climate Models (GCMs) in the Pearl River Delta, China. The climatic data is extracted from four Global Climate Models (GCMs) namely: The Community Atmosphere Model 4 (CAM4), The European Centre for Medium-Range Weather Forecasts-Hamburg 6 (ECHAM6), Model for Interdisciplinary Research On Climate 5 (MIROC5) and the Norwegian Earth System Model 1 (NorESM1). The modeling results show that climate change has major negative impacts on both rice growth and rice yields at all study sites. More specifically, the average of flowering durations decreases by 2.8 days (3.9 days), and the maturity date decreases by 11.0 days (14.7 days) under the 1.5 °C and (2.0 °C) warming scenarios, respectively. The yield for early mature rice and late mature rice are reduced by 292.5 kg/ha (558.9 kg/ha) and 151.8 kg/ha (380.0 kg/ha) under the 1.5 °C (2.0 °C) warming scenarios, respectively. Adjusting the planting dates of eight days later and 15 days earlier for early mature rice and late mature rice are simulated to be adaptively effective, respectively. The simulated optimum fertilizer amount is about 240 kg/ha, with different industrial fertilizer and organic matter being applied.

2019 ◽  
Vol 39 (6) ◽  
pp. 2984-2997 ◽  
Author(s):  
Yongli Wang ◽  
Allen Chan ◽  
Gabriel Ngar‐Cheung Lau ◽  
Qingxiang Li ◽  
Yuanjian Yang ◽  
...  

2020 ◽  
Vol 4 ◽  
Author(s):  
Stewart A. Jennings ◽  
Ann-Kristin Koehler ◽  
Kathryn J. Nicklin ◽  
Chetan Deva ◽  
Steven M. Sait ◽  
...  

The contribution of potatoes to the global food supply is increasing—consumption more than doubled in developing countries between 1960 and 2005. Understanding climate change impacts on global potato yields is therefore important for future food security. Analyses of climate change impacts on potato compared to other major crops are rare, especially at the global scale. Of two global gridded potato modeling studies published at the time of this analysis, one simulated the impacts of temperature increases on potential potato yields; the other did not simulate the impacts of farmer adaptation to climate change, which may offset negative climate change impacts on yield. These studies may therefore overestimate negative climate change impacts on yields as they do not simultaneously include CO2 fertilisation and adaptation to climate change. Here we simulate the abiotic impacts of climate change on potato to 2050 using the GLAM crop model and the ISI-MIP ensemble of global climate models. Simulations include adaptations to climate change through varying planting windows and varieties and CO2 fertilisation, unlike previous global potato modeling studies. Results show significant skill in reproducing observed national scale yields in Europe. Elsewhere, correlations are generally positive but low, primarily due to poor relationships between national scale observed yields and climate. Future climate simulations including adaptation to climate change through changing planting windows and crop varieties show that yields are expected to increase in most cases as a result of longer growing seasons and CO2 fertilisation. Average global yield increases range from 9 to 20% when including adaptation. The global average yield benefits of adaptation to climate change range from 10 to 17% across climate models. Potato agriculture is associated with lower green house gas emissions relative to other major crops and therefore can be seen as a climate smart option given projected yield increases with adaptation.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 771
Author(s):  
Pak Shing Yeung ◽  
Jimmy Chi-Hung Fung ◽  
Chao Ren ◽  
Yong Xu ◽  
Kangning Huang ◽  
...  

Urbanization is one of the most significant contributing factors to anthropogenic climate change. However, a lack of projected city land use data has posed significant challenges to factoring urbanization into climate change modeling. Thus, the results from current models may contain considerable errors in estimating future climate scenarios. The Pearl River Delta region was selected as a case study to provide insight into how large-scale urbanization and different climate change scenarios impact the local climate. This study adopts projected land use data from freely available satellite imagery and applies dynamic simulation land use results to the Weather Research and Forecasting Model (WRF). The simulation periods cover the summer periods in 2010 and 2029–2031, the latter of which is averaged to represent the year 2030. The WRF simulation used the observed local climate conditions in 2010 to represent the current scenario and the projected local climate changes for 2030 as the future scenario. Under all three future climate change scenarios, the warming trend is prominent (around 1–2 °C increase), with a widespread reduction in wind speed in inland areas (1–2 ms−1). The vulnerability of human health to thermal stress was evaluated by adopting the wet-bulb globe temperature (WBGT). The results from the future scenarios suggest a high public health risk due to rising temperatures in the future. This study provides a methodology for a more comprehensive understanding of future urbanization and its impact on regional climate by using freely available satellite images and WRF simulation tools. The simulated temperature and WBGT results can serve local governments and stakeholders in city planning and the creation of action plans that will reduce the potential vulnerability of human health to excessive heat.


2021 ◽  
Author(s):  
Chenxi Hu ◽  
Chi-Yung Tam ◽  
Xinwei Li ◽  
Kangning Huang ◽  
Chao Ren ◽  
...  

Abstract The impacts of future urban development and global warming forcing on hourly extreme rainfall over the Pearl River Delta (PRD) area have been investigated, by dynamically downscaling General Circulation Model (GCM) outputs using the Weather Research and Forecasting Model (WRF) at convection-permitting resolution, coupled with an Urban Canopy Model (UCM). Three downscaling experiments corresponding to different urban land cover (1999 and projected 2030) and climate (1951-to-2000 and 2001-to-2050 GCM simulations) were designed. Near-future climate change (up to 2050) and 1999-to-2030 urban development effects on PRD extreme precipitation were then examined. Results show that climate change and rapid urban development forcing have comparable positive effects on the intensity as well as heavy hourly rainfall probability over the PRD megacity. Global warming tends to increase heavy rainfall probability (from 40 to 60mm/hr) by about 1.3 to 1.8 times, but suppresses the frequency of light rainfall. Urban development increases urban rainfall probability within the whole range of intensity, with frequency for very heavy rainfall (> 90mm/hr) almost doubled. Overall, forcing due to rapid urban development plays an important role for projecting rainfall characteristic over the highly urbanized coastal PRD megacity, with impacts that can be comparable to global warming in the near future.


2019 ◽  
Vol 41 (3) ◽  
pp. 42-47
Author(s):  
Rebecca K. Zarger ◽  
Gina Larsen ◽  
Alexis Winter ◽  
Libby Carnahan ◽  
Ramona Madhosingh-Hector ◽  
...  

Abstract Our project investigates public perceptions of climate change risk and vulnerability in the Tampa Bay, Florida, region, specifically focused on how climate change is likely to impact water infrastructure in the area. As part of the project, our research team of anthropologists and environmentally-focused state extension agents collaboratively developed public workshops to promote more dialogue on local climate change impacts. The anthropologists developed localized climate change scenarios based on global climate models, Florida-centric models, and input from key informants. Extension agents brought expertise in climate and sustainability science and facilitating educational programming and dialogue. We documented residents' concerns and views on climate change, how local scenarios are received by the public, and how scenarios can be communicated to the public through narrative and visual formats. We consider the roles of anthropologist-extension agent partnerships in creating new spaces for dialogue on climate change futures.


Sign in / Sign up

Export Citation Format

Share Document