Contributions of climate change to cereal yields in Tibet, 1993–2017

2022 ◽  
Vol 32 (1) ◽  
pp. 101-116
Author(s):  
Rui Ding ◽  
Wenjiao Shi
Keyword(s):  
OALib ◽  
2020 ◽  
Vol 07 (07) ◽  
pp. 1-11
Author(s):  
Obed Nyangena ◽  
Victor Kidake Senelwa ◽  
Rachel Ngesa
Keyword(s):  

Agriculture ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 212 ◽  
Author(s):  
Shahzad Alvi ◽  
Faisal Jamil ◽  
Roberto Roson ◽  
Martina Sartori

Greenhouse gas emissions cause climate change, and agriculture is the most vulnerable sector. Farmers do have some capability to adapt to changing weather and climate, but this capability is contingent on many factors, including geographical and socioeconomic conditions. Assessing the actual adaptation potential in the agricultural sector is therefore an empirical issue, to which this paper contributes by presenting a study examining the impacts of climate change on cereal yields in 55 developing and developed countries, using data from 1991 to 2015. The results indicate that cereal yields are affected in all regions by changes in temperature and precipitation, with significant differences in certain macro-regions in the world. In Southern Asia and Central Africa, farmers fail to adapt to climate change. The findings suggest that the world should focus more on enhancing adaptive capacity to moderate potential damage and on coping with the consequences of climate change.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document