Material flow analysis (MFA) of an eco-economic system: a case study of Wujin District, Changzhou, China

2008 ◽  
Vol 3 (3) ◽  
pp. 367-374 ◽  
Author(s):  
Heping Huang ◽  
Jun Bi ◽  
Xiangmei Li ◽  
Bing Zhang ◽  
Jie Yang
Detritus ◽  
2021 ◽  
pp. 25-31
Author(s):  
Cecilia Matasci ◽  
Marcel Gauch ◽  
Heinz Boeni

Environmental threats are triggered by the overconsumption of raw materials. It is therefore necessary to move towards a society that both reduces extraction and keeps the majority of the extracted raw materials in the socio-economic system. Circular economy is a key strategy to reach these goals. To implement it effectively, it is necessary to understand and monitor material flows and to define hotspots, i.e. materials that need to be tackled with the highest priority. This paper is aimed at determining how to increase circularity in the Swiss economy by means of a Material Flow Analysis coupled with a simplified Life Cycle Assessment. After having characterized material flows, we analyzed two types of hotspots: i) Raw materials consumed and/or disposed at high level, and ii) Raw materials whose extraction and production generates high environmental impacts. The Material Flow Analysis shows that each year 119 Mt of raw materials enter the Swiss economy. Therefrom, 15 Mt are derived from recycled waste inside the country; 67 Mt leave the system yearly; 27 Mt towards disposal. Out of the disposed materials, 56% are recycled and re-enter the socio-economic system as secondary materials. Looking at hotspots; concrete, asphalt, gravel and sand are among materials that are consumed and disposed at high level. Yet, looking at greenhouse gas emissions generated during extraction and production, metals - including the ones in electrical and electronic equipment - as well as textiles are among the categories that carry the biggest burden on the environment per unit of material.


2009 ◽  
Vol 59 (10) ◽  
pp. 1911-1920 ◽  
Author(s):  
F. Meinzinger ◽  
K. Kröger ◽  
R. Otterpohl

Material Flow Analysis is a method that can be used to assess sanitation systems with regard to their environmental impacts. Modelling water and nutrients flows of the urban water, wastewater and waste system can highlight risks for environmental pollution and can help evaluating the potential for linking sanitation with resource recovery and agricultural production. This study presents the results of an analysis of nitrogen and phosphorus flows of Arba Minch town in South Ethiopia. The current situation is modelled and possible scenarios for upgrading the town's sanitation system are assessed. Two different scenarios for nutrient recovery are analysed. Scenario one includes co-composting municipal organic waste with faecal sludge from pit latrines and septic tanks as well as the use of compost in agriculture. The second scenario based on urine-diversion toilets includes application of urine as fertiliser and composting of faecal matter. In order to allow for variations in the rate of adoption, the model can simulate varying degrees of technology implementation. Thus, the impact of a step-wise or successive approach can be illustrated. The results show that significant amounts of plant nutrients can be provided by both options, co-composting and urine diversion.


2020 ◽  
Vol 148 ◽  
pp. 05002 ◽  
Author(s):  
I Made Wahyu Widyarsana ◽  
Elprida Agustina

The aim of this paper is to identify patterns of waste management in the Bali archipelago tourism area. The Nusa Penida District is a new tourism destination located in the Southeast of Bali. In 2018, there were average 391,071 tourists/day coming and 45,520 local residents live in this area. The total amount of waste produced in Nusa Penida District is 15.90 tonnes/day or 173.61 m3/day. High tourist activities have not been handled by a good waste management. Questionnaires were distributed randomly to the public and tourists to find out the pattern of waste management. Observation also conducted to build the material flow analysis as a waste information baseline. Around 48.21% organic waste used as livestock feed and 8.45% dumped carelessly to the environment. Around 32.51% anorganic waste be burnt and 45.68% waste dumped carelessly. Moreover, Nusa Penida District facing offering waste management problem caused by their cultural activities. In total, around 8.82 tonnes/day waste is dumped in landfills and total unmanaged waste around 6.73 tonnes/day.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 509 ◽  
Author(s):  
Julie Gobert ◽  
Romain Allais

This research aims at understanding better the nature of stakeholders’ resistance to and interest in repair and reuse. In fact, the authors assume that in the future waste management could be less centralized using a network of territorialized initiatives based on repair and reuse activities with high social and environmental values. Such system innovation requires tools and methods to support analysis and facilitate decision-making in multi-stakeholders, multi-scales systems. The framework for spatiotemporal analysis of territorial projects considers a project’s stakeholder network and the way they mobilize resources. These resources may be tangible or intangible, brought by individuals, organizations or even the territory. This communication focuses on the implementation of such an analysis in the community of communes Coeur de Savoie, to understand how local initiatives emerge and on which interactions and resources they are based. This paper proposes feedback on the implementation of the spatio-temporal analysis in one case study (Coeur de Savoie), and provides insights to build new networks promoting reuse and repair.


Sign in / Sign up

Export Citation Format

Share Document