scholarly journals New feature extraction approach for epileptic EEG signal detection using time-frequency distributions

2010 ◽  
Vol 48 (4) ◽  
pp. 321-330 ◽  
Author(s):  
Carlos Guerrero-Mosquera ◽  
Armando Malanda Trigueros ◽  
Jorge Iriarte Franco ◽  
Ángel Navia-Vázquez
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Amjed S. Al-Fahoum ◽  
Ausilah A. Al-Fraihat

Technically, a feature represents a distinguishing property, a recognizable measurement, and a functional component obtained from a section of a pattern. Extracted features are meant to minimize the loss of important information embedded in the signal. In addition, they also simplify the amount of resources needed to describe a huge set of data accurately. This is necessary to minimize the complexity of implementation, to reduce the cost of information processing, and to cancel the potential need to compress the information. More recently, a variety of methods have been widely used to extract the features from EEG signals, among these methods are time frequency distributions (TFD), fast fourier transform (FFT), eigenvector methods (EM), wavelet transform (WT), and auto regressive method (ARM), and so on. In general, the analysis of EEG signal has been the subject of several studies, because of its ability to yield an objective mode of recording brain stimulation which is widely used in brain-computer interface researches with application in medical diagnosis and rehabilitation engineering. The purposes of this paper, therefore, shall be discussing some conventional methods of EEG feature extraction methods, comparing their performances for specific task, and finally, recommending the most suitable method for feature extraction based on performance.


2010 ◽  
Vol 49 (03) ◽  
pp. 230-237 ◽  
Author(s):  
K. Lweesy ◽  
N. Khasawneh ◽  
M. Fraiwan ◽  
H. Wenz ◽  
H. Dickhaus ◽  
...  

Summary Background: The process of automatic sleep stage scoring consists of two major parts: feature extraction and classification. Features are normally extracted from the polysomno-graphic recordings, mainly electroencephalograph (EEG) signals. The EEG is considered a non-stationary signal which increases the complexity of the detection of different waves in it. Objectives: This work presents a new technique for automatic sleep stage scoring based on employing continuous wavelet transform (CWT) and linear discriminant analysis (LDA) using different mother wavelets to detect different waves embedded in the EEG signal. Methods: The use of different mother wave-lets increases the ability to detect waves in the EEG signal. The extracted features were formed based on CWT time frequency entropy using three mother wavelets, and the classification was performed using the linear discriminant analysis. Thirty-two data sets from the MIT-BIH database were used to evaluate the performance of the proposed method. Results: Features of a single EEG signal were extracted successfully based on the time frequency entropy using the continuous wavelet transform with three mother wavelets. The proposed method has shown to outperform the classification based on a CWT using a single mother wavelet. The accuracy was found to be 0.84, while the kappa coefficient was 0.78. Conclusions: This work has shown that wavelet time frequency entropy provides a powerful tool for feature extraction for the non-stationary EEG signal; the accuracy of the classification procedure improved when using multiple wavelets compared to the use of single wavelet time frequency entropy.


2019 ◽  
Vol 9 (18) ◽  
pp. 3642
Author(s):  
Lin Liang ◽  
Haobin Wen ◽  
Fei Liu ◽  
Guang Li ◽  
Maolin Li

The incipient damages of mechanical equipment excite weak impulse vibration, which is hidden, almost unobservable, in the collected signal, making fault detection and failure prevention at the inchoate stage rather challenging. Traditional feature extraction techniques, such as bandpass filtering and time-frequency analysis, are suitable for matrix processing but challenged by the higher-order data. To tackle these problems, a novel method of impulse feature extraction for vibration signals, based on sparse non-negative tensor factorization is presented in this paper. Primarily, the phase space reconstruction and the short time Fourier transform are successively employed to convert the original signal into time-frequency distributions, which are further arranged into a three-way tensor to obtain a time-frequency multi-aspect array. The tensor is decomposed by sparse non-negative tensor factorization via hierarchical alternating least squares algorithm, after which the latent components are reconstructed from the factors by the inverse short time Fourier transform and eventually help extract the impulse feature through envelope analysis. For performance verification, the experimental analysis on the bearing datasets and the swashplate piston pump has confirmed the effectiveness of the proposed method. Comparisons to the traditional methods, including maximum correlated kurtosis deconvolution, singular value decomposition, and maximum spectrum kurtosis, also suggest its better performance of feature extraction.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiongliang Xiao ◽  
Yuee Fang

Brain computer interaction (BCI) based on EEG can help patients with limb dyskinesia to carry out daily life and rehabilitation training. However, due to the low signal-to-noise ratio and large individual differences, EEG feature extraction and classification have the problems of low accuracy and efficiency. To solve this problem, this paper proposes a recognition method of motor imagery EEG signal based on deep convolution network. This method firstly aims at the problem of low quality of EEG signal characteristic data, and uses short-time Fourier transform (STFT) and continuous Morlet wavelet transform (CMWT) to preprocess the collected experimental data sets based on time series characteristics. So as to obtain EEG signals that are distinct and have time-frequency characteristics. And based on the improved CNN network model to efficiently recognize EEG signals, to achieve high-quality EEG feature extraction and classification. Further improve the quality of EEG signal feature acquisition, and ensure the high accuracy and precision of EEG signal recognition. Finally, the proposed method is validated based on the BCI competiton dataset and laboratory measured data. Experimental results show that the accuracy of this method for EEG signal recognition is 0.9324, the precision is 0.9653, and the AUC is 0.9464. It shows good practicality and applicability.


2021 ◽  
Vol 83 (6) ◽  
pp. 53-61
Author(s):  
Mahfuzah Mustafa ◽  
Zarith Liyana Zahari ◽  
Rafiuddin Abdubrani

The connection between music and human are very synonyms because music could reduce stress. The state of stress could be measured using EEG signal, an electroencephalogram (EEG) measurement which contains an arousal and valence index value. In previous studies, it is found that the Matthew Correlation Coefficient (MCC) performance accuracy is of 85±5%. The arousal indicates strong emotion, and valence indicates positive and negative degree of emotion. Arousal and valence values could be used to measure the accuracy performance. This research focuses on the enhance MCC parameter equation based on arousal and valence values to perform the maximum accuracy percentage in the frequency domain and time-frequency domain analysis. Twenty-one features were used to improve the significance of feature extraction results and the investigated arousal and valence value. The substantial feature extraction involved alpha, beta, delta and theta frequency bands in measuring the arousal and valence index formula. Based on the results, the arousal and valance index is accepted to be applied as parameters in the MCC equations. However, in certain cases, the improvement of the MCC parameter is required to achieve a high accuracy percentage and this research proposed Matthew correlation coefficient advanced (MCCA) in order to improve the performance result by using a six sigma method. In conclusion, the MCCA equation is established to enhance the existing MCC parameter to improve the accuracy percentage up to 99.9% for the arousal and valence index.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xingliang Xiong ◽  
Hua Yu ◽  
Haixian Wang ◽  
Jiuchuan Jiang

Objective. Action intention understanding EEG signal classification is indispensable for investigating human-computer interactions and intention understanding mechanisms. Numerous investigations on classification tasks extract classification features by using graph theory metrics; however, the classification results are usually not good. Method. To effectively implement the task of action intention understanding EEG signal classification, we proposed a new feature extraction method by improving discriminative spatial patterns. Results. The whole frequency band and fusion band achieved satisfactory classification accuracies. Compared with other authors’ methods for action intention understanding EEG signal classification, the new method performs more satisfactorily in some aspects. Conclusions. The new feature extraction method not only effectively avoids complex values when solving the generalized eigenvalue problem but also perfectly realizes appreciable classification accuracies. Fusing the classification features of different frequency bands is a useful strategy for the classification task.


2021 ◽  
Vol 64 ◽  
pp. 102268
Author(s):  
Y. Ech-Choudany ◽  
D. Scida ◽  
M. Assarar ◽  
J. Landré ◽  
B. Bellach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document