Neural network-based model predictive control for type 1 diabetic rats on artificial pancreas system

2018 ◽  
Vol 57 (1) ◽  
pp. 177-191 ◽  
Author(s):  
Saeid Bahremand ◽  
Hoo Sang Ko ◽  
Ramin Balouchzadeh ◽  
H. Felix Lee ◽  
Sarah Park ◽  
...  
2009 ◽  
Vol 3 (5) ◽  
pp. 1091-1098 ◽  
Author(s):  
Lalo Magni ◽  
Marco Forgione ◽  
Chiara Toffanin ◽  
Chiara Dalla Man ◽  
Boris Kovatchev ◽  
...  

Background: The technological advancements in subcutaneous continuous glucose monitoring and insulin pump delivery systems have paved the way to clinical testing of artificial pancreas devices. The experience derived by clinical trials poses technological challenges to the automatic control expert, the most notable being the large interpatient and intrapatient variability and the inherent uncertainty of patient information. Methods: A new model predictive control (MPC) glucose control system is proposed. The starting point is an MPC algorithm applied in 20 type 1 diabetes mellitus (T1DM) subjects. Three main changes are introduced: individualization of the ARX model used for prediction; synthesis of the MPC law on top of the open-loop basal/bolus therapy; and a run-to-run approach for implementing day-by-day tuning of the algorithm. In order to individualize the ARX model, a sufficiently exciting insulin profile is imposed by splitting the premeal bolus into two smaller boluses (40% and 60%) injected 30 min before and 30 min after the meal. Results: The proposed algorithm was tested on 100 virtual subjects extracted from an in silico T1DM population. The trial simulates 44 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. For 10 days, meals are multiplied by a random variable uniformly distributed in [0.5, 1.5], while insulin delivery is based on nominal meals. Moreover, for 10 days, either a linear increase or decrease of insulin sensitivity (±25% of nominal value) is introduced. Conclusions: The ARX model identification procedure offers an automatic tool for patient model individualization. The run-to-run approach is an effective way to auto-tune the aggressiveness of the closed-loop control law, is robust to meal variation, and is also capable of adapting the regulator to slow parameter variations, e.g., on insulin sensitivity.


Author(s):  
Yong Mei ◽  
Trinh Huynh ◽  
Rachel Khor ◽  
Derrick K. Rollins

The artificial pancreas (AP) is an electro-mechanical device to control glucose (G) levels in the blood for people with diabetes using mathematical modeling and control system technology. There are many variables not measured and modeled by these devices that affect G levels. This work evaluates the effectiveness of two control systems for the case where critical inputs are unmeasured. This work compares and evaluates two predictive feedback control (FBC) algorithms in two unmeasured input studies. In the first study, the process is a dynamic transfer function model with one measured input variable and one unmeasured input variable. The process for the second study is a diabetes simulator with insulin feed rate (IFR) measured and carbohydrate consumption (CC) unmeasured. The feedback predictive control (FBPC) approach achieved much better control performance than model predictive control (MPC) in both studies. In the first study, MPC was shown to get worse as the process lag increases but FBPC was unaffected by process lag. In the diabetes simulation study, for five surrogate type 1 diabetes subjects, the standard deviation of G about its mean (standard deviation) (i.e., the set point) was 133% larger for MPC relative to FBPC. For FBPC, its standard deviation was less than 10% larger for unmeasured CC versus measured CC. Thus, FBPC appears to be a more effective AP control algorithm than MPC for unmeasured disturbances and may not perform much worse in practice when CC is measured versus when it is unmeasured since CC can be very inaccurate in real situations.


2019 ◽  
Vol 39 ◽  
pp. 341-348
Author(s):  
Hoo Sang Ko ◽  
Ramin Balouchzadeh ◽  
Guney Uzun ◽  
H. Felix Lee ◽  
Sarah Park ◽  
...  

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110195
Author(s):  
Sorin Grigorescu ◽  
Cosmin Ginerica ◽  
Mihai Zaha ◽  
Gigel Macesanu ◽  
Bogdan Trasnea

In this article, we introduce a learning-based vision dynamics approach to nonlinear model predictive control (NMPC) for autonomous vehicles, coined learning-based vision dynamics (LVD) NMPC. LVD-NMPC uses an a-priori process model and a learned vision dynamics model used to calculate the dynamics of the driving scene, the controlled system’s desired state trajectory, and the weighting gains of the quadratic cost function optimized by a constrained predictive controller. The vision system is defined as a deep neural network designed to estimate the dynamics of the image scene. The input is based on historic sequences of sensory observations and vehicle states, integrated by an augmented memory component. Deep Q-learning is used to train the deep network, which once trained can also be used to calculate the desired trajectory of the vehicle. We evaluate LVD-NMPC against a baseline dynamic window approach (DWA) path planning executed using standard NMPC and against the PilotNet neural network. Performance is measured in our simulation environment GridSim, on a real-world 1:8 scaled model car as well as on a real size autonomous test vehicle and the nuScenes computer vision dataset.


Sign in / Sign up

Export Citation Format

Share Document