Simulation Studies Comparing Feedback Predictive Control to Model Predictive Control for Unmeasured Disturbances in the Artificial Pancreas Application

Author(s):  
Yong Mei ◽  
Trinh Huynh ◽  
Rachel Khor ◽  
Derrick K. Rollins

The artificial pancreas (AP) is an electro-mechanical device to control glucose (G) levels in the blood for people with diabetes using mathematical modeling and control system technology. There are many variables not measured and modeled by these devices that affect G levels. This work evaluates the effectiveness of two control systems for the case where critical inputs are unmeasured. This work compares and evaluates two predictive feedback control (FBC) algorithms in two unmeasured input studies. In the first study, the process is a dynamic transfer function model with one measured input variable and one unmeasured input variable. The process for the second study is a diabetes simulator with insulin feed rate (IFR) measured and carbohydrate consumption (CC) unmeasured. The feedback predictive control (FBPC) approach achieved much better control performance than model predictive control (MPC) in both studies. In the first study, MPC was shown to get worse as the process lag increases but FBPC was unaffected by process lag. In the diabetes simulation study, for five surrogate type 1 diabetes subjects, the standard deviation of G about its mean (standard deviation) (i.e., the set point) was 133% larger for MPC relative to FBPC. For FBPC, its standard deviation was less than 10% larger for unmeasured CC versus measured CC. Thus, FBPC appears to be a more effective AP control algorithm than MPC for unmeasured disturbances and may not perform much worse in practice when CC is measured versus when it is unmeasured since CC can be very inaccurate in real situations.

2009 ◽  
Vol 3 (5) ◽  
pp. 1091-1098 ◽  
Author(s):  
Lalo Magni ◽  
Marco Forgione ◽  
Chiara Toffanin ◽  
Chiara Dalla Man ◽  
Boris Kovatchev ◽  
...  

Background: The technological advancements in subcutaneous continuous glucose monitoring and insulin pump delivery systems have paved the way to clinical testing of artificial pancreas devices. The experience derived by clinical trials poses technological challenges to the automatic control expert, the most notable being the large interpatient and intrapatient variability and the inherent uncertainty of patient information. Methods: A new model predictive control (MPC) glucose control system is proposed. The starting point is an MPC algorithm applied in 20 type 1 diabetes mellitus (T1DM) subjects. Three main changes are introduced: individualization of the ARX model used for prediction; synthesis of the MPC law on top of the open-loop basal/bolus therapy; and a run-to-run approach for implementing day-by-day tuning of the algorithm. In order to individualize the ARX model, a sufficiently exciting insulin profile is imposed by splitting the premeal bolus into two smaller boluses (40% and 60%) injected 30 min before and 30 min after the meal. Results: The proposed algorithm was tested on 100 virtual subjects extracted from an in silico T1DM population. The trial simulates 44 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. For 10 days, meals are multiplied by a random variable uniformly distributed in [0.5, 1.5], while insulin delivery is based on nominal meals. Moreover, for 10 days, either a linear increase or decrease of insulin sensitivity (±25% of nominal value) is introduced. Conclusions: The ARX model identification procedure offers an automatic tool for patient model individualization. The run-to-run approach is an effective way to auto-tune the aggressiveness of the closed-loop control law, is robust to meal variation, and is also capable of adapting the regulator to slow parameter variations, e.g., on insulin sensitivity.


Author(s):  
Zhengru Ren ◽  
Roger Skjetne ◽  
Zhen Gao

This paper deals with a nonlinear model predictive control (NMPC) scheme for a winch servo motor to overcome the sudden peak tension in the lifting wire caused by a lumped-mass payload at the beginning of a lifting off or a lowering operation. The crane-wire-payload system is modeled in 3 degrees of freedom with the Newton-Euler approach. Direct multiple shooting and real-time iteration (RTI) scheme are employed to provide feedback control input to the winch servo. Simulations are implemented with MATLAB and CaSADi toolkit. By well tuning the weighting matrices, the NMPC controller can reduce the snatch loads in the lifting wire and the winch loads simultaneously. A comparative study with a PID controller is conducted to verify its performance.


Author(s):  
Prem Kumar ◽  
B. Bhavya Anoohya ◽  
Radhakant Padhi

Inspired by fast model predictive control (MPC), a new nonlinear optimal command tracking technique is presented in this paper, which is named as “Tracking-oriented Model Predictive Static Programming (T-MPSP).” Like MPC, a model-based prediction-correction approach is adopted. However, the entire problem is converted to a very low-dimensional “static programming” problem from which the control history update is computed in closed-form. Moreover, the necessary sensitivity matrices (which are the backbone of the algorithm) are computed recursively. These two salient features make the computational process highly efficient, thereby making it suitable for implementation in real time. A trajectory tracking problem of a two-wheel differential drive mobile robot is presented to validate and demonstrate the proposed philosophy. The simulation studies are very close to realistic scenario by incorporating disturbance input, parameter uncertainty, feedback sensor noise, time delays, state constraints, and control constraints. The algorithm has been implemented on a real hardware and the experimental validation corroborates the simulation results.


Sign in / Sign up

Export Citation Format

Share Document