An Agent-based Adaptive Mechanism for Efficient Job Scheduling in Open and Large-scale Environments

Author(s):  
Yikun Yang ◽  
Fenghui Ren ◽  
Minjie Zhang
Author(s):  
Lucas Meyer de Freitas ◽  
Oliver Schuemperlin ◽  
Milos Balac ◽  
Francesco Ciari

This paper shows an application of the multiagent, activity-based transport simulation MATSim to evaluate equity effects of a congestion charging scheme. A cordon pricing scheme was set up for a scenario of the city of Zurich, Switzerland, to conduct such an analysis. Equity is one of the most important barriers toward the implementation of a congestion charging system. After the challenges posed by equity evaluations are examined, it is shown that agent-based simulations with heterogeneous values of time allow for an increased level of detail in such evaluations. Such detail is achieved through a high level of disaggregation and with a 24-h simulation period. An important difference from traditional large-scale models is the low degree of correlation between travel time savings and welfare change. While traditional equity analysis is based on travel time savings, MATSim shows that choice dimensions not included in traditional models, such as departure time changes, can also play an important role in equity effects. The analysis of the results in light of evidence from the literature shows that agent-based models are a promising tool to conduct more complete equity evaluations not only of congestion charges but also of transport policies in general.


Author(s):  
Zhixin Tie ◽  
David Ko ◽  
Harry H. Cheng

Mobile agent technology has become an important approach for the design and development of distributed systems. However, there is little research regarding the monitoring of computer resources and usage at large scale distributed computer centers. This paper presents a mobile agent-based system called the Mobile Agent Based Computer Monitoring System (MABCMS) that supports the dynamic sending and executing of control command, dynamic data exchange, and dynamic deployment of mobile code in C/C++. Based on the Mobile-C library, agents can call low level functions in binary dynamic or static libraries, and thus can monitor computer resources and usage conveniently and efficiently. Two experimental applications have been designed using the MABCMS. The experiments were conducted in a university computer center with hundreds of computer workstations and 15 server machines. The first experiment uses the MABCMS to detect improper usage of the computer workstations, such as playing computer games. The second experimental application uses the MABCMS to detect system resources such as available hard disk space. The experiments show that the mobile agent based monitoring system is an effective method for detecting and interacting with students playing computer games and a practical way to monitor computer resources in large scale distributed computer centers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Longzhao Liu ◽  
Xin Wang ◽  
Xuyang Chen ◽  
Shaoting Tang ◽  
Zhiming Zheng

Confirmation bias and peer pressure are regarded as the main psychology origins of personal opinion adjustment. Each show substantial impacts on the formation of collective decisions. Nevertheless, few attempts have been made to study how the interplay between these two mechanisms affects public opinion evolution on large-scale social networks. In this paper, we propose an agent-based model of opinion dynamics which incorporates the conjugate effect of confirmation bias (characterized by the population identity scope and initiative adaptation speed) and peer pressure (described by a susceptibility threshold and passive adaptation speed). First, a counterintuitive non-monotonous phenomenon arises in the homogeneous population: the number of opinion clusters first increases and then decreases to one as the population identity scope becomes larger. We then consider heterogeneous populations where “impressionable” individuals with large susceptibility to peer pressure and “confident” individuals with small susceptibility coexist. We find that even a small fraction of impressionable individuals could help eliminate public polarization when population identity scope is relatively large. In particular, the impact of impressionable agents would be greater if these agents are hubs. More intriguingly, while impressionable individuals have randomly distributed initial opinions, most of them would finally evolve to moderates. We highlight the emergence of these “impressionable moderates” who are easily influenced, yet are important in public opinion competition, which may inspire efficient strategies in winning competitive campaigns.


2004 ◽  
Vol 19 (1) ◽  
pp. 1-25 ◽  
Author(s):  
SARVAPALI D. RAMCHURN ◽  
DONG HUYNH ◽  
NICHOLAS R. JENNINGS

Trust is a fundamental concern in large-scale open distributed systems. It lies at the core of all interactions between the entities that have to operate in such uncertain and constantly changing environments. Given this complexity, these components, and the ensuing system, are increasingly being conceptualised, designed, and built using agent-based techniques and, to this end, this paper examines the specific role of trust in multi-agent systems. In particular, we survey the state of the art and provide an account of the main directions along which research efforts are being focused. In so doing, we critically evaluate the relative strengths and weaknesses of the main models that have been proposed and show how, fundamentally, they all seek to minimise the uncertainty in interactions. Finally, we outline the areas that require further research in order to develop a comprehensive treatment of trust in complex computational settings.


Author(s):  
Shintaro Utsumi ◽  
Shingo Takahashi ◽  
Kotaro Ohori ◽  
Hirokazu Anai
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document