FPGA-accelerated textured surface defect segmentation based on complete period Fourier reconstruction

2019 ◽  
Vol 17 (5) ◽  
pp. 1659-1673
Author(s):  
Yinfei Pan ◽  
Rongsheng Lu ◽  
Tengda Zhang
1973 ◽  
Vol 1 (4) ◽  
pp. 354-362 ◽  
Author(s):  
F. R. Martin ◽  
P. H. Biddison

Abstract Treads made with emulsion styrene-butadiene copolymer (SBR), solution SBR, polybutadiene (BR), and a 60/40 emulsion SBR/BR mixture were built as four-way tread sections on G78-15 belted bias tires, which were driven over both concrete and gravel-textured highways and on a small, circular, concrete test track. The tires were front mounted. When driven on concrete highway, all except the BR tread had either crumbled- or liquid-appearing surfaces, thought to have been formed by mechanical degradation or fatigue. When cornered on concrete, these materials formed small cylindrical particles or rolls. The BR tread had a smooth, granular-textured surface when driven on concrete highway and a ridge or sawtooth abrasion pattern when cornered on concrete. All the materials appeared rough and torn when run on gravel-textured highway. The differences in wear surface formed on BR tread and the other three are thought to be due primarily to the relatively high resilience of BR.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

It is important to accurately classify the defects in hot rolled steel strip since the detection of defects in hot rolled steel strip is closely related to the quality of the final product. The lack of actual hot-rolled strip defect data sets currently limits further research on the classification of hot-rolled strip defects to some extent. In real production, the convolutional neural network (CNN)-based algorithm has some difficulties, for example, the algorithm is not particularly accurate in classifying some uncommon defects. Therefore, further research is needed on how to apply deep learning to the actual detection of defects on the surface of hot rolled steel strip. In this paper, we proposed a hot rolled steel strip defect dataset called Xsteel surface defect dataset (X-SDD) which contains seven typical types of hot rolled strip defects with a total of 1360 defect images. Compared with the six defect types of the commonly used NEU surface defect database (NEU-CLS), our proposed X-SDD contains more types. Then, we adopt the newly proposed RepVGG algorithm and combine it with the spatial attention (SA) mechanism to verify the effect on the X-SDD. Finally, we apply multiple algorithms to test on our proposed X-SDD to provide the corresponding benchmarks. The test results show that our algorithm achieves an accuracy of 95.10% on the testset, which exceeds other comparable algorithms by a large margin. Meanwhile, our algorithm achieves the best results in Macro-Precision, Macro-Recall and Macro-F1-score metrics.


2021 ◽  
Vol 70 ◽  
pp. 1-13
Author(s):  
Lisha Cui ◽  
Xiaoheng Jiang ◽  
Mingliang Xu ◽  
Wanqing Li ◽  
Pei Lv ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 870
Author(s):  
Robby Neven ◽  
Toon Goedemé

Automating sheet steel visual inspection can improve quality and reduce costs during its production. While many manufacturers still rely on manual or traditional inspection methods, deep learning-based approaches have proven their efficiency. In this paper, we go beyond the state-of-the-art in this domain by proposing a multi-task model that performs both pixel-based defect segmentation and severity estimation of the defects in one two-branch network. Additionally, we show how incorporation of the production process parameters improves the model’s performance. After manually constructing a real-life industrial dataset, we first implemented and trained two single-task models performing the defect segmentation and severity estimation tasks separately. Next, we compared this to a multi-task model that simultaneously performs the two tasks at hand. By combining the tasks into one model, both segmentation tasks improved by 2.5% and 3% mIoU, respectively. In the next step, we extended the multi-task model using sensor fusion with process parameters. We demonstrate that the incorporation of the process parameters resulted in a further mIoU increase of 6.8% and 2.9% for the defect segmentation and severity estimation tasks, respectively.


Sign in / Sign up

Export Citation Format

Share Document