Antifungal polyketides from the Picea rubens and Vaccinium angustifolium endophyte Lachnellula calyciformis

2020 ◽  
Vol 19 (10) ◽  
pp. 1101-1112
Author(s):  
David R. McMullin ◽  
Joey B. Tanney ◽  
Grace J. Daly ◽  
J. David Miller
Castanea ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. 128
Author(s):  
John R. Butnor ◽  
Brittany M. Verrico ◽  
Kurt H. Johnsen ◽  
Christopher A. Maier ◽  
Victor Vankus ◽  
...  

2017 ◽  
Vol 7 (4) ◽  
pp. 281-289 ◽  
Author(s):  
David F. Bridges ◽  
Anna Breard ◽  
Alison Lacombe ◽  
Don C. Valentine ◽  
Shravani Tadepalli ◽  
...  

1988 ◽  
Vol 68 (1) ◽  
pp. 63-75 ◽  
Author(s):  
LEONARD J. EATON ◽  
DAVID G. PATRIQUIN

Soil ammonium and nitrate in the top 15 cm of soil were monitored after application of ammonium nitrate and ammonium sulfate to plots at 14 PF (previously fertilized) and 12 NF (never fertilized) lowbush blueberry (Vaccinium angustifolium Ait.) stands representing a range of soil types and management histories. Overall, nitrate values in unfertilized and ammonium sulfate plots were higher at PF than at NF sites, suggesting greater nitrification at PF sites. In laboratory incubation studies, nitrification proceeded immediately in soil from a PF site, but only after a 4-wk lag in that from an adjacent NF site. Nitrification rates were low compared to that in a garden soil (pH 6.6). N-Serve inhibited nitrification in both soils. In ammonium nitrate plots, "excess" N values (N values in fertilized plots minus values in unfertilized plots) were higher for PF than for NF sites, suggesting greater immobilization, plant uptake or loss of N at NF sites. There was no evidence, in laboratory studies, of immobilization of added N by soil from either type of site. Rhizome N concentration increased significantly in response to fertilization at an NF site, but not at a PF site. Key words: Blueberry (lowbush), fertilizer and soil nitrogen


Botany ◽  
2015 ◽  
Vol 93 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Scott N. White ◽  
Nathan S. Boyd ◽  
Rene C. Van Acker ◽  
Clarence J. Swanton

Red sorrel (Rumex acetosella L.) is a ramet-producing herbaceous creeping perennial species commonly found as a weed in commercially managed lowbush blueberry (Vaccinium angustifolium Aiton) fields in Nova Scotia, Canada. Flowering and seed production occur primarily in overwintering ramets of this species, indicating a potential vernalization requirement for flowering. This study was therefore initiated to examine the role of vernalization, photoperiod, and pre-vernalization stimulus on ramet flowering. Red sorrel ramets propagated from creeping roots and seeds collected from established red sorrel populations in lowbush blueberry had an obligate requirement for vernalization to flower. Ramet populations maintained under pre- and post-vernalization photoperiods of 16 h flowered following 12 weeks of vernalization at 4 ± 0.1 °C, whereas those maintained under constant 16, 14, or 8 h photoperiods without vernalization did not flower. Vernalization for 10 weeks maximized, but did not saturate, the flowering response. Pre-vernalization photoperiod affected flowering response, with increased flowering frequency observed in ramet populations exposed to decreasing, rather than constant, photoperiod prior to vernalization. This study represents the first attempt to determine the combined effects of vernalization and photoperiod on red sorrel flowering, and the results provide a benchmark for the future study of flowering and sexual reproduction in this economically important perennial weed species.


Trees ◽  
2013 ◽  
Vol 28 (2) ◽  
pp. 329-344 ◽  
Author(s):  
John E. Major ◽  
Alex Mossler ◽  
Debby C. Barsi ◽  
Moira Campbell ◽  
John Malcolm

2002 ◽  
Vol 82 (4) ◽  
pp. 781-783 ◽  
Author(s):  
K. I. N. Jensen ◽  
E. G. Specht

Spring application of 1.0 kg ha-1 hexazinone to fruiting-year lowbush blueberry no later than the F3 floral stage, when floral buds separate, but before the corolla tube shows white, controlled some common herbaceous perennial weeds without injury to the crop. Key words: Herbicide injury, growth stages, weed control, hexazinone, Vaccinium angustifolium


1994 ◽  
Vol 74 (2) ◽  
pp. 341-345 ◽  
Author(s):  
Leonard J. Eaton

Effects of herbicide and herbicide-fertilizer combinations on vegetative and reproductive growth of the lowbush blueberry (Vaccinium angustifolium Ait.) were assessed over a 12-yr period (six production cycles). All treatments stimulated stem lengths, fruit buds per stem and fresh fruit yields compared with untreated controls, but only after 3–6 yr. After the second cycle, stem lengths and fruit bud numbers were greater in herbicide + NPK-treated plants than in all others. Fresh fruit yields were variable throughout the study but were higher in herbicide and herbicide + fertilizer plots than in untreated controls after 1982, except in 1988. Nitrogen levels were greater in leaves and rhizomes of plants in all herbicide and herbicide + fertilizer plots than in control plots after 10 yr, whereas phosphorus was higher only in plants fertilized with NPK. These results suggest the lowbush blueberry responds slowly to herbicide and fertilizer applications. Increased vegetative and reproductive development, as well as denser plant stands, resulted from repeated herbicide and fertilizer applications. Fertilizers applied in conjunction with herbicides stimulate vegetative growth (and fruit buds if an NPK fertilizer), but appear to have no consistent effect on fresh fruit yields. Key words:Vaccinium angustifolium, fertilizer, herbicide, fruit buds, yield


Sign in / Sign up

Export Citation Format

Share Document