Microstructure and Solid/Liquid Interface Evolutions of Directionally Solidified Fe-Al-Ta Eutectic Alloy

2019 ◽  
Vol 34 (3) ◽  
pp. 656-661 ◽  
Author(s):  
Chunjuan Cui ◽  
Songyuan Wang ◽  
Meng Yang ◽  
Haijun Su ◽  
Yagang Wen ◽  
...  
2017 ◽  
Vol 62 (1) ◽  
pp. 365-368 ◽  
Author(s):  
M. Trepczyńska-Łent

AbstractIn this paper the analysis of solid-liquid interface morphology in white carbide eutectic was made. In a vacuum Bridgman-type furnace, under an argon atmosphere, directionally solidified sample of Fe - C alloy was produced. The pulling rate was v = 125 μm/s (450 mm/h) and constant temperature gradient G = 33.5 K/mm. The microstructure of the sample was frozen. The microstructure of the sample was examined on the longitudinal section using an light microscope and scanning electron microscope.


1981 ◽  
Vol 12 ◽  
Author(s):  
B. Toloui ◽  
A. J. Macleod ◽  
D. D. Double

ABSTRACTStudies have been made of the microstructures developed in directionally solidified monotectic Al-In, Al-Bi and Zn-Bi alloys, as a function of growth velocity and temperature gradient. With increasing growth velocity and decreasing gradient the microstructures show transitions from regular rod-like arrangements of the lower melting point phase, through arrays of aligned droplets to coarse irregular droplet dispersions. Intermediate stages show rods with longitudinal shape perturbations of a classic Rayleigh-type instability. The changes are discussed in terms of oscillatory instabilities at the solid-liquid interface (enhanced by increasing growth velocity and decreasing temperature gradient) coupled with ripening effects in the solid + liquid region behind the interface.


1982 ◽  
Vol 13 ◽  
Author(s):  
H. E. Cline

ABSTRACTA submicron conductor array was fabricated without using lithography by selectively etching a recrystallized A1-A12Cu eutectic alloy thin film. The 2 micron thick eutectic films were deposited on glass substrates and directionally solidified with both a quartz-iodine lamp and a scanning laser at rates between .0016 and .14 cm/sec. The resulting structure consisted of alternate parallel stripes of the two eutectic phases with a spacing between .5 and 4 microns that was controlled by the solidification rate. An array of submicron Al- rich conductors was fabricated by selectively etching away the Al2 Cu phase. At solidification rates greater than .004 cm/sec using the lamp heater the solid-liquid interface became non-planar while with the laser the structure was well alligned at the highest rates used, .14 cm/sec. At the maximum theoretical solidification rate that produces a two phase aligned eutectic structure the width of the Al wires would be 100A.


2015 ◽  
Vol 387 ◽  
pp. 73-80 ◽  
Author(s):  
Peng Peng ◽  
Xinzhong Li ◽  
Jiangong Li ◽  
Yanqing Su ◽  
Dongmei Liu ◽  
...  

2006 ◽  
Vol 508 ◽  
pp. 31-36
Author(s):  
Jiu Zhou Zhao ◽  
Lorenz Ratke

A model has been developed by taking into account the common action of the nucleation, the diffusional growth, the collisions and coagulations of the minority phase droplets and the spatial phase segregation to describe the microstructure evolution in an immiscible alloy solidified rapidly under the vertical directional solidification conditions. The model is satisfactorily verified by comparison with an analytically solvable case first, and then applied to predict the microstructure evolution in a directionally solidified Al-Pb alloy. The numerical results show that at a high solidification velocity a constitutional supercooling region appears in front of the solid/liquid interface and the liquid-liquid decomposition takes place there. A higher solidification velocity leads to a higher nucleation rate for a given temperature gradient and, therefore, a higher number density of the minority phase droplets. As a result, the average radius of droplets in the melt at the solid/liquid interface decreases with the solidification velocity.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Kenichi Ohsasa ◽  
Seiji Miura

AbstractA numerical model was developed for the simulation of microstructure evolution during the solidification of Nb-Si eutectic alloy. In this model, the cellular automaton method was used to simulate the eutectic growth of Nb solid solution and Nb3Si intermetallics. Diffusion in liquid, mass conservation at the solid/liquid interface and local equilibrium at the solid/liquid interface with consideration of curvature undercooling were solved to determine the positions of the Nb/liquid and Nb3Si/liquid interfaces. In the alloy with eutectic composition of 0.18at%Nb, irregular eutectic growth morphology was observed in relatively lower undercooling region. On the other hand, in higher undercooling region over 50K, dendrite morphology of Nb3Si was observed. An alloy with hypo-eutectic composition, cell and dendrite morphology were observed in lower undercooling region, while coupling eutectic morphology was formed in higher undercooling region over 25K.The growth velocity of the coupling growth increased with increase in the degree of undercooling of melt.


Sign in / Sign up

Export Citation Format

Share Document