Microstructural Perturbations in Directionally Solidified Al-In, Al-Bi and Zn-Bi Monotectic Alloys

1981 ◽  
Vol 12 ◽  
Author(s):  
B. Toloui ◽  
A. J. Macleod ◽  
D. D. Double

ABSTRACTStudies have been made of the microstructures developed in directionally solidified monotectic Al-In, Al-Bi and Zn-Bi alloys, as a function of growth velocity and temperature gradient. With increasing growth velocity and decreasing gradient the microstructures show transitions from regular rod-like arrangements of the lower melting point phase, through arrays of aligned droplets to coarse irregular droplet dispersions. Intermediate stages show rods with longitudinal shape perturbations of a classic Rayleigh-type instability. The changes are discussed in terms of oscillatory instabilities at the solid-liquid interface (enhanced by increasing growth velocity and decreasing temperature gradient) coupled with ripening effects in the solid + liquid region behind the interface.

2017 ◽  
Vol 62 (1) ◽  
pp. 365-368 ◽  
Author(s):  
M. Trepczyńska-Łent

AbstractIn this paper the analysis of solid-liquid interface morphology in white carbide eutectic was made. In a vacuum Bridgman-type furnace, under an argon atmosphere, directionally solidified sample of Fe - C alloy was produced. The pulling rate was v = 125 μm/s (450 mm/h) and constant temperature gradient G = 33.5 K/mm. The microstructure of the sample was frozen. The microstructure of the sample was examined on the longitudinal section using an light microscope and scanning electron microscope.


2019 ◽  
Vol 34 (3) ◽  
pp. 656-661 ◽  
Author(s):  
Chunjuan Cui ◽  
Songyuan Wang ◽  
Meng Yang ◽  
Haijun Su ◽  
Yagang Wen ◽  
...  

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Hassan M. S. Al-Sarrach ◽  
Ghalib Y. Kahwaji ◽  
Mohamed A. Samaha

The freezing of water around immersed unfinned and finned horizontal tubes is simulated numerically. The impact of natural convection as well as the water density inversion with temperature is considered. The equations governing both fluid flow and heat transfer around the tubes and through the solid–liquid interface are solved using finite difference schemes. To follow the moving solid–liquid boundary, dynamic grid generation is performed using the elliptic partial differential equation method with iterative interpolating smoothing to avoid divergence. For validation, the present results for unfinned tubes are compared with experimental studies reported in the literature. The present numerical simulations are aimed at improving our understanding of the parameters affecting the freezing process around both finned and unfinned tubes. The results showed that the flow patterns are similar in both tube configurations with one main vortex in the liquid region when there is no inversion in the water density. The presence of fins complicates the distribution of local Nusselt number along the solid–liquid interface in comparison with the unfinned tube. The impact of natural convection on the rate of ice formation is limited to the initial period of the freezing process. The results also show the freezing enhancement when utilizing fins. An accumulated ice mass correlation is developed for each tube configuration. This model can be used to optimize the design of both finned and unfinned tubes in energy storage systems, which are viable tools for air conditioning load shifting and leveling.


2007 ◽  
Vol 546-549 ◽  
pp. 2301-2306 ◽  
Author(s):  
Hua Tan ◽  
Jing Chen ◽  
Xin Lin ◽  
Xiao Ming Zhao ◽  
Wei Dong Huang

Laser rapid forming (LRF) is a new manufacturing technology, which has been developed on the basis of multi-layer laser cladding. In the LRF process, the microstructure has important effects on the mechanical properties of the partsbut the control of microstructure is a problem. In this study, the influences of crystallography orientations of substrate and profile of solid/liquid interface on microstructure were discussed. Further, with the combining of the columnar to equiaxed transition (CET) model during alloy solidification, the growth law of microstructure of Rene88DT alloy was established. It has been found that the temperature gradient was lowest and the solidification velocity was greatest at the solid/liquid interface of the tail of molten pool, and hence the CET occurs easily at this position. The temperature measurement system of molten pool was developed by using a two-color infrared thermometer in this study. With the measurement of temperature gradient of the tail of molten pool by using a two-color infrared thermometer, the process parameters of laser multi-layer cladding were optimized. Finally, directional solidification even single crystal was achieved in laser multi-layer cladding.


Shinku ◽  
2000 ◽  
Vol 43 (5) ◽  
pp. 603-606
Author(s):  
Toshiyuki HIGASHINO ◽  
Katsuto TANAHASI ◽  
Naohisa INOUE ◽  
Atushi MORI

2020 ◽  
Vol 30 (23) ◽  
pp. 2001396 ◽  
Author(s):  
Chen Yin ◽  
Jiaqiang Li ◽  
Tianran Li ◽  
Yue Yu ◽  
Ya Kong ◽  
...  

2006 ◽  
Vol 124 (14) ◽  
pp. 144506 ◽  
Author(s):  
Ramón García Fernández ◽  
José L. F. Abascal ◽  
Carlos Vega

Sign in / Sign up

Export Citation Format

Share Document