Chondrogenic differentiation of mouse bone marrow mesenchymal stem cells induced by cartilage-derived morphogenetic protein-2 in vitro

Author(s):  
Hongtao Tian ◽  
Shuhua Yang ◽  
Liang Xu ◽  
Yukun Zhang ◽  
Weihua Xu
2016 ◽  
Vol 19 (2) ◽  
pp. 111-116
Author(s):  
Rafal Hussamildeen Abdullah ◽  
◽  
Shahlla Mahdi Salih ◽  
Nahi Yosef Yaseen ◽  
Ahmed Majeed Al-Shammari ◽  
...  

2020 ◽  
Vol 8 (21) ◽  
pp. 4680-4693
Author(s):  
Jirong Yang ◽  
Yumei Xiao ◽  
Zizhao Tang ◽  
Zhaocong Luo ◽  
Dongxiao Li ◽  
...  

The different negatively charged microenvironments of collagen hydrogels affect the protein adsorption, cell morphology, and chondrogenic differentiation of BMSCs in vitro and in vivo.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Heng Zhang ◽  
Wen Zhang ◽  
Guangchao Bai ◽  
Lei Gao ◽  
Kuanxin Li

This study is aimed at investigating the effects of bone morphogenetic protein-7 (BMP-7) on the differentiation of bone marrow mesenchymal stem cells (BMSCs) into neuron-like cells in vitro. The rat BMSCs were isolated and identified, which were divided into the control, empty, recombinant rhBMP-7 transfection, and Lv-BMP-7 transfection groups. BMSCs were induced under different conditions. CCK-8 assay was performed to detect cell proliferation. ALP was used to detect cell activity. Cellular morphology after induction was observed. Immunofluorescence was conducted to detect the expression and location of nerve cell markers. Quantitative real-time PCR and Western blot analysis were performed to detect the mRNA and protein expression levels, respectively. The rhBMP-7 and Lv-BMP-7 promoted the proliferation of BMSCs, accompanied with increased ALP activities. Morphological observations revealed that rhBMP-7 and Lv-BMP-7 induced BMSCs to differentiate into neuron-like cells. Immunofluorescence revealed that the rhBMP-7 and Lv-BMP-7 groups showed positive expression of MAP-2 and Nfh in BMSCs. MAP-2 was mainly distributed in the cell body and cellular protrusion, while Nfh was mainly distributed in the cytoplasm and cell protrusion. Positive mRNA and protein expressions of MAP-2 and Nfh were observed in the cells of the rhBMP-7 and Lv-BMP-7 groups, and the expression levels were significantly higher than the control and empty groups. Both exogenous BMP-7 (rhBMP-7) and endogenous BMP-7 (Lv-BMP-7) can induce BMSCs to differentiate into neuron-like cells highly expressing the neuronal markers MAP-2 and Nfh.


2019 ◽  
Vol 53 (2) ◽  
pp. 93-99
Author(s):  
Nasim Malekmohamadi ◽  
Alireza Abdanipour ◽  
Mehrdad Ghorbanlou ◽  
Saeed Shokri ◽  
Reza Shirazi ◽  
...  

AbstractObjective. Stem cell therapy, specifically, pre-induction of mesenchymal stem cells toward male germ-like cells may be useful in patients with azoospermia. The aim of this study was to evaluate in vitro differentiation of mouse bone marrow-derived mesenchymal stem cells (BMSCs) into male germ-like cells by indirect co-culture with testicular cells in the presence of bone morphogenetic protein 4 (BMP4).Methods. Experimental groups included: control (mouse BMSCs), treatment group-1 (BMSCs treated with BMP4), treatment group-2 (indirect co-culture of BMSCs with mouse testicular cells in the presence of BMP4) and treatment group-3 (indirect co-culture of BMSCs with testicular cells). BMSCs-derived male germ-like cells were evaluated by the expression of Dazl, and Stra8 using RT-qPCR.Results. Stra8 gene expression was significantly increased in the treatment group-2 and Dazl gene was significantly increased in the treatment group-1 compared to other groups. In conclusion, indirect co-culturing of BMSCs with testicular cells and BMP4 leads to the differentiation of BMSCs into male germ-like cells which express specific male germ-like genes. Testicular cells released factors that contributed to the differentiation of BMSCs into male germ progenitor cells.Conclusion. This study suggests that mesenchymal stem cells may be differentiated into male germ-like cells and therefore, may be a novel treatment option for men with azoospermia.


Sign in / Sign up

Export Citation Format

Share Document