bone morphogenetic protein 7
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 39)

H-INDEX

54
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Mitchel Tate ◽  
Nimna Perera ◽  
Darnel Prakoso ◽  
Andrew M. Willis ◽  
Minh Deo ◽  
...  

Diabetes is a major contributor to the increasing burden of heart failure prevalence globally, at least in part due to a disease process termed diabetic cardiomyopathy. Diabetic cardiomyopathy is characterised by cardiac structural changes that are caused by chronic exposure to the diabetic milieu. These structural changes are a major cause of left ventricular (LV) wall stiffness and the development of LV dysfunction. In the current study, we investigated the therapeutic potential of a cardiac-targeted bone morphogenetic protein 7 (BMP7) gene therapy, administered once diastolic dysfunction was present, mimicking the timeframe in which clinical management of the cardiomyopathy would likely be desired. Following 18 weeks of untreated diabetes, mice were administered with a single tail-vein injection of recombinant adeno-associated viral vector (AAV), containing the BMP7 gene, or null vector. Our data demonstrated, after 8 weeks of treatment, that rAAV6-BMP7 treatment exerted beneficial effects on LV functional and structural changes. Importantly, diabetes-induced LV dysfunction was significantly attenuated by a single administration of rAAV6-BMP7. This was associated with a reduction in cardiac fibrosis, cardiomyocyte hypertrophy and cardiomyocyte apoptosis. In conclusion, BMP7 gene therapy limited pathological remodelling in the diabetic heart, conferring an improvement in cardiac function. These findings provide insight for the potential development of treatment strategies urgently needed to delay or reverse LV pathological remodelling in the diabetic heart.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 708
Author(s):  
Ting-Chung Wang ◽  
Sheng-Jie Luo ◽  
Shun-Fu Chang

Glioblastoma, World Health Organization—grade IV, is the most malignant glioma type and it is still an incurable tumor due to the high level of heterogeneity and uncontrolled metastatic nature. In addition to the tumorigenicity-suppressing activity, bone morphogenetic protein 7 (BMP7) has recently been found for its invasion-promoting role in glioblastoma. However, the detailed and precise mechanism in this issue should have more elucidation. Thus, in this study, we determined the BMP7 effect on glioblastoma transmigration and migration regulations and the underlying mechanisms. Human LN18/LN229 glioblastoma cells were used in this study. Our results showed a higher BMP7/pSmad5 level in human malignant glioma tissues compared to healthy brain tissues. In addition, it was demonstrated that endogenous and exogenous BMP7 stimulation could increase the transmigration and migration capabilities of human LN18/LN229 glioblastoma cells. Moreover, this event is regulated by Smad5 and p75 neurotrophin receptor (p75NTR) signaling. Furthermore, unexpected data are that the Smad1 gene knockdown could lead to the cell death of human LN18 glioblastoma cells. Overall, the present study finds that the invasion-promoting activity of BMP7 might be an autocrine stimulation of glioblastoma and this effect could be regulated by Smad5-p75NTR signaling.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 642
Author(s):  
Hyunjin Lee ◽  
Sae Kyung Min ◽  
Yoon-Hee Park ◽  
Jun-Beom Park

The growth of bone morphogenetic protein 7 (BMP-7) has been applied for tissue regeneration due to its osteoinductive properties. The aim of this research is to analyze the enhancing effects of BMP-7 on the osteogenic differentiation and mineralization of human bone marrow-derived stem cells cultured on the bovine bone particle. After the stem cells were loaded onto the bone graft material, their morphology was observed on day 7. Viability assays based on the application of fluorescent stains were used for qualitative analyses. Alkaline phosphatase activity assays and Alizarin red staining were used for the assessment of osteogenic differentiation on days 7 and 14. Next-generation mRNA sequencing was applied to evaluate global gene expression. Gene ontology and pathway analysis was used to propose the underlying mechanism. Fibroblast-like morphology was attained with the stem cells. The cells were shown to be firmly attached to the bone particle. Most of the stem cells produced an intense green fluorescence. The relative cellular viability assay values for BMP-7 groups at 0, 10, and 100 ng/mL on day 7 were 0.295 ± 0.003, 0.250 ± 0.002, and 0.240 ± 0.003, respectively (p < 0.05). Alkaline phosphatase activity was significantly higher in BMP-7 groups at concentration of 100 ng/mL compared to the control on days 7 and 14 (p < 0.05). The results of the mineralization assay showed significantly higher values for BMP-7 groups at 100 ng/mL concentration when compared with the control (p < 0.05). The expression of RUNX2 was increased with application of BMP-7 and mitogen-activated protein kinase pathway was associated with the target genes. Overall, this study shows that in vitro application of BMP-7 increases alkaline phosphorylase activity and mineralization of stem cells culture on deproteinized bovine bone mineral. The study suggests that combining stem cells with osteoinductive growth factors with scaffolds can have synergy effects on osteogenic differentiation.


2021 ◽  
pp. 1234-1240
Author(s):  
Mas Rizky A. A. Syamsunarno ◽  
Fenty Alia ◽  
Neni Anggraeni ◽  
Vanessa Ayu Sumirat ◽  
Suhendra Praptama ◽  
...  

Background and Aim: Brown adipose tissue's (BAT) ability to increase energy expenditure has become a new focus in obesity research. The amount and activity of BAT are inversely correlated with body-mass index and body fat percentage. Bone morphogenetic protein 7 (BMP7) plays a role in the differentiation and development of BAT, which can be increased by bioactive compounds from several medicinal plants. Moringa oleifera (MO) leaves are rich with vitamin, minerals, and bioactive compounds and have been used for treating obesity-related diseases in the past. The aim of this study was to explore the potency of MO leaf extract (MOLE) to modulate BAT differentiation in mice fed a high-fat diet (HFD). Materials and Methods: Twenty-four, 5-week-old male Deutsche Denken Yoken mice (Mus musculus) were randomly divided into four groups: The normal chow diet group was fed a normal diet, the HFD group was fed a HFD, the HFD+MOLE1, and the HFD+MOLE2 groups were fed HFD and MOLE in a dose of 280 and 560 mg/kg body weight (BW)/day, respectively. The experiment was performed for 7 weeks. At the end of the experiment, histological analysis was performed on the interscapular BAT, and blood was drawn for BMP7 protein levels. Results: After 7 weeks, BAT weight in the HFD group was nearly twice in the weight of the HFD+MOLE1 group (125±13.78 mg vs. 75±13.78 mg; p<0.001). There was also a significant increase in BAT cell density in the HFD+MOLE1 group. BMP7 serum protein levels were significantly higher in the HFD+MOLE1 group compared to the HFD group. Conclusion: The administration of MOLE in a dose of 280 mg/kg BW/day in HFD-mice induces BAT differentiation and proliferation by upregulating BMP7 protein levels.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Heng Zhang ◽  
Wen Zhang ◽  
Guangchao Bai ◽  
Lei Gao ◽  
Kuanxin Li

This study is aimed at investigating the effects of bone morphogenetic protein-7 (BMP-7) on the differentiation of bone marrow mesenchymal stem cells (BMSCs) into neuron-like cells in vitro. The rat BMSCs were isolated and identified, which were divided into the control, empty, recombinant rhBMP-7 transfection, and Lv-BMP-7 transfection groups. BMSCs were induced under different conditions. CCK-8 assay was performed to detect cell proliferation. ALP was used to detect cell activity. Cellular morphology after induction was observed. Immunofluorescence was conducted to detect the expression and location of nerve cell markers. Quantitative real-time PCR and Western blot analysis were performed to detect the mRNA and protein expression levels, respectively. The rhBMP-7 and Lv-BMP-7 promoted the proliferation of BMSCs, accompanied with increased ALP activities. Morphological observations revealed that rhBMP-7 and Lv-BMP-7 induced BMSCs to differentiate into neuron-like cells. Immunofluorescence revealed that the rhBMP-7 and Lv-BMP-7 groups showed positive expression of MAP-2 and Nfh in BMSCs. MAP-2 was mainly distributed in the cell body and cellular protrusion, while Nfh was mainly distributed in the cytoplasm and cell protrusion. Positive mRNA and protein expressions of MAP-2 and Nfh were observed in the cells of the rhBMP-7 and Lv-BMP-7 groups, and the expression levels were significantly higher than the control and empty groups. Both exogenous BMP-7 (rhBMP-7) and endogenous BMP-7 (Lv-BMP-7) can induce BMSCs to differentiate into neuron-like cells highly expressing the neuronal markers MAP-2 and Nfh.


Sign in / Sign up

Export Citation Format

Share Document