collagen hydrogels
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 72)

H-INDEX

33
(FIVE YEARS 7)

Materialia ◽  
2021 ◽  
Vol 20 ◽  
pp. 101217
Author(s):  
Egor Olegovich Osidak ◽  
Ekaterina Pavlovna Kalabusheva ◽  
Elena Victorovna Alpeeva ◽  
Sergey Ivanovich Belousov ◽  
Sergey Vladimirovich Krasheninnikov ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoon Hong Chun ◽  
Sun-Kyoung Park ◽  
Eun Jeong Kim ◽  
Hyun Jong Lee ◽  
Hyewon Kim ◽  
...  

AbstractThe available treatment options include corneal transplantation for significant corneal defects and opacity. However, shortage of donor corneas and safety issues in performing corneal transplantation are the main limitations. Accordingly, we adopted the injectable in situ-forming hydrogels of collagen type I crosslinked via multifunctional polyethylene glycol (PEG)-N-hydroxysuccinimide (NHS) for treatment and evaluated in vivo biocompatibility. The New Zealand White rabbits (N = 20) were randomly grouped into the keratectomy-only and keratectomy with PEG-collagen hydrogel-treated groups. Samples were processed for immunohistochemical evaluation. In both clinical and histologic observations, epithelial cells were able to migrate and form multilayers over the PEG-collagen hydrogels at the site of the corneal stromal defect. There was no evidence of inflammatory or immunological reactions or increased IOP for PEG-collagen hydrogel-treated corneas during the four weeks of observation. Immunohistochemistry revealed the presence of α-smooth muscle actin (α-SMA) in the superior corneal stroma of the keratectomy-only group (indicative of fibrotic healing), whereas low stromal α-SMA expression was detected in the keratectomy with PEG-collagen hydrogel-treated group. Taken together, we suggest that PEG-collagen may be used as a safe and effective alternative in treating corneal defect in clinical setting.


2021 ◽  
Author(s):  
Hyeree Park ◽  
Showan N Nazhat ◽  
Derek H Rosenzweig

Tendons are force transmitting mechanosensitive tissues predominantly comprised of highly aligned collagen type I fibres. In this study, the recently introduced gel aspiration-ejection method was used to rapidly fabricate aligned dense collagen (ADC) hydrogel scaffolds. ADCs provide a biomimetic environment compared to traditional collagen hydrogels that are mechanically unstable and comprised of randomly oriented fibrils. The ADC scaffolds were shown to be anisotropic with comparable stiffness to immature tendons. Furthermore, the application of static and cyclic uniaxial loading, short-term (48 h) and high-strain (20%), resulted in a 3-fold increase in both the ultimate tensile strength and modulus of ADCs. Similar mechanical activation of human mesenchymal stem cell (MSC) seeded ADCs in serum- and growth factor-free medium induced their tenogenic differentiation. Both static and cyclic loading profiles resulted in a greater than 12-fold increase in scleraxis gene expression and either suppressed or maintained osteogenic and chondrogenic expressions. Following the 48 h mechanoactivation period, the MSC-seeded scaffolds were matured by tethering in basal medium without further external mechanical stimulation for 19 days, altogether making up 21 days of culture. Extensive cell-induced matrix remodeling and deposition of collagens type I and III, tenascin-C and tenomodulin were observed, where initial cyclic loading induced significantly higher tenomodulin protein content. Moreover, the initial short-term mechanical stimulation elongated and polarized seeded MSCs and overall cell alignment was significantly increased in those under static loading. These findings indicate the regenerative potential of the ADC scaffolds for short-term mechanoactivated tenogenic differentiation, which were achieved even in the absence of serum and growth factors that may potentially increase clinical translatability.


Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1420
Author(s):  
Pablo Edmundo Antezana ◽  
Sofia Municoy ◽  
Claudio Javier Pérez ◽  
Martin Federico Desimone

Wounds represent a major healthcare problem especially in hospital-associated infections where multi-drug resistant strains are often involved. Nowadays, biomaterials with therapeutic molecules play an active role in wound healing and infection prevention. In this work, the development of collagen hydrogels loaded with silver nanoparticles and Cannabis sativa oil extract is described. The presence of the silver nanoparticles gives interesting feature to the biomaterial such as improved mechanical properties or resistance to collagenase degradation but most important is the long-lasting antimicrobial effect. Cannabis sativa oil, which is known for its anti-inflammatory and analgesic effects, possesses antioxidant activity and successfully improved the biocompatibility and also enhances the antimicrobial activity of the nanocomposite. Altogether, these results suggest that this novel nanocomposite biomaterial is a promising alternative to common treatments of wound infections and wound healing.


Nano Letters ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 7625-7630
Author(s):  
Viet Sang Doan ◽  
SungGyu Chun ◽  
Jie Feng ◽  
Sangwoo Shin
Keyword(s):  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1137
Author(s):  
Jana Stepanovska ◽  
Monika Supova ◽  
Karel Hanzalek ◽  
Antonin Broz ◽  
Roman Matejka

Bioprinting is a modern tool suitable for creating cell scaffolds and tissue or organ carriers from polymers that mimic tissue properties and create a natural environment for cell development. A wide range of polymers, both natural and synthetic, are used, including extracellular matrix and collagen-based polymers. Bioprinting technologies, based on syringe deposition or laser technologies, are optimal tools for creating precise constructs precisely from the combination of collagen hydrogel and cells. This review describes the different stages of bioprinting, from the extraction of collagen hydrogels and bioink preparation, over the parameters of the printing itself, to the final testing of the constructs. This study mainly focuses on the use of physically crosslinked high-concentrated collagen hydrogels, which represents the optimal way to create a biocompatible 3D construct with sufficient stiffness. The cell viability in these gels is mainly influenced by the composition of the bioink and the parameters of the bioprinting process itself (temperature, pressure, cell density, etc.). In addition, a detailed table is included that lists the bioprinting parameters and composition of custom bioinks from current studies focusing on printing collagen gels without the addition of other polymers. Last but not least, our work also tries to refute the often-mentioned fact that highly concentrated collagen hydrogel is not suitable for 3D bioprinting and cell growth and development.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Longpeng Dong ◽  
Qingli Liu ◽  
Yongli Gao ◽  
Hengxing Jia ◽  
Wenling Dai ◽  
...  

Abstract Collagen is a promising material for tissue engineering, but the poor mechanical properties of collagen hydrogels, which tend to cause contraction under the action of cellular activity, make its application challengeable. In this study, the amino group of type I collagen (Col I) was modified with methacrylic anhydride (MA) and the photo-crosslinkable methacrylate anhydride modified type I collagen (CM) with three different degrees of substitution (DS) was prepared. The physical properties of CM and Col I hydrogels were tested, including micromorphology, mechanical properties and degradation properties. The results showed that the storage modulus and degradation rate of hydrogels could be adjusted by changing the DS of CM. In vitro, chondrocytes were seeded into these four groups of hydrogels and subjected to fluorescein diacetate/propidium iodide (FDA/PI) staining, cell counting kit-8 (CCK-8) test, histological staining and cartilage-related gene expression analysis. In vivo, these hydrogels encapsulating chondrocytes were implanted subcutaneously into nude mice, then histological staining and sulfated glycosaminoglycan (sGAG)/DNA assays were performed. The results demonstrated that contraction of hydrogels affected behaviors of chondrocytes, and CM hydrogels with suitable DS could resist contraction of hydrogels and promote the secretion of cartilage-specific matrix in vitro and in vivo.


Author(s):  
Tomoko Gowa Oyama ◽  
Kotaro Oyama ◽  
Atsushi Kimura ◽  
Fumiya Yoshida ◽  
Ryo Ishida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document