scholarly journals Integrated magnetotelluric and seismic investigation of Cenozoic graben structure near Obrzycko, Poland

2021 ◽  
Author(s):  
Adam Cygal ◽  
Michał Stefaniuk ◽  
Anna Kret

AbstractThis article presents the results of an integrated interpretation of measurements made using Audio-Magnetotellurics and Seismic Reflection geophysical methods. The obtained results were used to build an integrated geophysical model of shallow subsurface cover consisting of Cenozoic deposits, which then formed the basis for a detailed lithological and tectonic interpretation of deeper Mesozoic sediments. Such shallow covers, consisting mainly of glacial Pleistocene deposits, are typical for central and northern Poland. This investigation concentrated on delineating the accurate geometry of Obrzycko Cenozoic graben structure filled with loose deposits, as it was of great importance to the acquisition, processing and interpretation of seismic data that was to reveal the tectonic structure of the Cretaceous and Jurassic sediments which underly the study area. Previously, some problems with estimation of seismic static corrections over similar grabens filled with more recent, low-velocity deposits were encountered. Therefore, a novel approach to estimating the exact thickness of such shallow cover consisting of low-velocity deposits was applied in the presented investigation. The study shows that some alternative geophysical data sets (such as magnetotellurics) can be used to significantly improve the imaging of geological structure in areas where seismic data are very distorted or too noisy to be used alone

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Hobiger ◽  
M. Hallo ◽  
C. Schmelzbach ◽  
S. C. Stähler ◽  
D. Fäh ◽  
...  

AbstractOrbital and surface observations can shed light on the internal structure of Mars. NASA’s InSight mission allows mapping the shallow subsurface of Elysium Planitia using seismic data. In this work, we apply a classical seismological technique of inverting Rayleigh wave ellipticity curves extracted from ambient seismic vibrations to resolve, for the first time on Mars, the shallow subsurface to around 200 m depth. While our seismic velocity model is largely consistent with the expected layered subsurface consisting of a thin regolith layer above stacks of lava flows, we find a seismic low-velocity zone at about 30 to 75 m depth that we interpret as a sedimentary layer sandwiched somewhere within the underlying Hesperian and Amazonian aged basalt layers. A prominent amplitude peak observed in the seismic data at 2.4 Hz is interpreted as an Airy phase related to surface wave energy trapped in this local low-velocity channel.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. B243-B252 ◽  
Author(s):  
Peter Bergmann ◽  
Artem Kashubin ◽  
Monika Ivandic ◽  
Stefan Lüth ◽  
Christopher Juhlin

A method for static correction of time-lapse differences in reflection arrival times of time-lapse prestack seismic data is presented. These arrival-time differences are typically caused by changes in the near-surface velocities between the acquisitions and had a detrimental impact on time-lapse seismic imaging. Trace-to-trace time shifts of the data sets from different vintages are determined by crosscorrelations. The time shifts are decomposed in a surface-consistent manner, which yields static corrections that tie the repeat data to the baseline data. Hence, this approach implies that new refraction static corrections for the repeat data sets are unnecessary. The approach is demonstrated on a 4D seismic data set from the Ketzin [Formula: see text] pilot storage site, Germany, and is compared with the result of an initial processing that was based on separate refraction static corrections. It is shown that the time-lapse difference static correction approach reduces 4D noise more effectively than separate refraction static corrections and is significantly less labor intensive.


1975 ◽  
Vol 12 (2) ◽  
pp. 182-208 ◽  
Author(s):  
M. J. Berry ◽  
D. A. Forsyth

A synthesis of Canadian Cordilleran refraction data recorded prior to 1971 with other geophysical data shows major features which correlate well with the regional geological structure. The wavelength of M topography decreases from about 200 km at 54°N to about 110 km at 52°N and culminates in a major lithospheric discontinuity east of Vancouver Island. The seismic data indicate the region of the Fraser River at Quesnel, the region immediately east of and parallel to the Coast Plutonic Complex and possibly the western edge of the Hazelton Mountains are sites of significant changes in lithospheric structure.Lateral variations in the average crustal density are necessary to reconcile both gravity and seismic data. The crust beneath the central, intermontane region is characterized by a mass deficiency, whereas the density of the crust beneath Vancouver Island appears greater than average.Calculation of synthetic record sections shows that the Pn phase may propagate considerably beyond crossover in a layer a few wavelengths thick. A model for the Canadian Cordillera which includes a low velocity layer as little as 8 km below the M appears plausible. Model calculations suggest that the M approximates a discontinuity beneath the Coast Plutonic Complex, but is better modelled as a transition zone beneath the Omineca Crystalline belt.


2020 ◽  
Author(s):  
Silvia Salas-Romero ◽  
Christopher Juhlin ◽  
Christian Bernstone

<p>A large number of dams located in Sweden, built in the second half of 20<sup>th </sup>century, are earth embankment dams. Seepages and internal erosion represent safety issues, which are difficult to detect and predict. There are indirect methods to detect seepages, but these do not provide their location. The hydropower operator Vattenfall has initiated a research project to assess geophysical methods as a decision support and asset management tool for this type of structure. The project consists of detecting built-in flaws in the core of a 20 m long and 4 m high experimental dam using geophysical (seismic and resistivity) and temperature measurements taken at the top of and inside the dam structure for a period of approximately 18 months. The behaviour of the dam itself will be monitored by geotechnical instrumentation.</p><p>This work focuses on testing P-wave traveltime tomography for detecting defects and supporting the interpretation of P-wave reflection seismic data. Synthetic traveltime studies were performed using the dam structure, constant P-wave velocities for each material, and the seismic acquisition design. Five parallel lines of hydrophones were used, three at the top and two at the bottom of the dam. The central hydrophone line at the top of the dam coincides with the position of the seismic sources. In addition, four boreholes to 4 m depth are positioned on each side of the central hydrophone line in both edges of the dam. Within these boreholes shots and receivers were positioned at every 0.5 m depth. The initial velocity model of the dam considers that the dam is filled with water up to a height of 3.5 m. A series of defects (low velocity zones with varying size and position) were inserted. Other factors, like noise or error in the acquisition geometry, were also considered. The defects may be cavities or permeable/loose layers.</p><p>Preliminary results show, in general, that the defect position can be identified by tomography. The velocity and size of the defects, however, are not well recovered by the method. Recovery of the defects using traveltime tomography is greatly influenced by the defect position, as the seismic ray coverage is limited in some parts, such as the central lower part of the dam. In the case of a defect located closer to the top hydrophone lines or one of larger size, the anomalies are better identified. We note that the amplitudes of the anomalies are very small, which may complicate identifying defects using real data. The anomaly signatures depend on the shape of the defect, for example a cubic defect compared to a horizontal permeable layer, which could help to identify and characterize the defect. Although the primary focus lies on identifying the presence of defects, information about their dimension and type is also important.</p><p>Future work will be focused on processing repeated seismic fieldwork campaigns at the experimental dam, in order to investigate the dam integrity using time-lapse seismic measurements, including comparing the seismic data with other types of data.</p>


2009 ◽  
Author(s):  
Teck Kean Lim ◽  
Aqil Ahmed ◽  
Muhammad Antonia Gibrata ◽  
Gunawan Taslim

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Albers ◽  
Angelika Svetlove ◽  
Justus Alves ◽  
Alexander Kraupner ◽  
Francesca di Lillo ◽  
...  

AbstractAlthough X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaochun Wang ◽  
Hans Thybo ◽  
Irina M. Artemieva

AbstractAll models of the magmatic and plate tectonic processes that create continental crust predict the presence of a mafic lower crust. Earlier proposed crustal doubling in Tibet and the Himalayas by underthrusting of the Indian plate requires the presence of a mafic layer with high seismic P-wave velocity (Vp > 7.0 km/s) above the Moho. Our new seismic data demonstrates that some of the thickest crust on Earth in the middle Lhasa Terrane has exceptionally low velocity (Vp < 6.7 km/s) throughout the whole 80 km thick crust. Observed deep crustal earthquakes throughout the crustal column and thick lithosphere from seismic tomography imply low temperature crust. Therefore, the whole crust must consist of felsic rocks as any mafic layer would have high velocity unless the temperature of the crust were high. Our results form basis for alternative models for the formation of extremely thick juvenile crust with predominantly felsic composition in continental collision zones.


2020 ◽  
Vol 221 (3) ◽  
pp. 1542-1554 ◽  
Author(s):  
B C Root

SUMMARY Current seismic tomography models show a complex environment underneath the crust, corroborated by high-precision satellite gravity observations. Both data sets are used to independently explore the density structure of the upper mantle. However, combining these two data sets proves to be challenging. The gravity-data has an inherent insensitivity in the radial direction and seismic tomography has a heterogeneous data acquisition, resulting in smoothed tomography models with de-correlation between different models for the mid-to-small wavelength features. Therefore, this study aims to assess and quantify the effect of regularization on a seismic tomography model by exploiting the high lateral sensitivity of gravity data. Seismic tomography models, SL2013sv, SAVANI, SMEAN2 and S40RTS are compared to a gravity-based density model of the upper mantle. In order to obtain similar density solutions compared to the seismic-derived models, the gravity-based model needs to be smoothed with a Gaussian filter. Different smoothening characteristics are observed for the variety of seismic tomography models, relating to the regularization approach in the inversions. Various S40RTS models with similar seismic data but different regularization settings show that the smoothening effect is stronger with increasing regularization. The type of regularization has a dominant effect on the final tomography solution. To reduce the effect of regularization on the tomography models, an enhancement procedure is proposed. This enhancement should be performed within the spectral domain of the actual resolution of the seismic tomography model. The enhanced seismic tomography models show improved spatial correlation with each other and with the gravity-based model. The variation of the density anomalies have similar peak-to-peak magnitudes and clear correlation to geological structures. The resolvement of the spectral misalignment between tomographic models and gravity-based solutions is the first step in the improvement of multidata inversion studies of the upper mantle and benefit from the advantages in both data sets.


Sign in / Sign up

Export Citation Format

Share Document