scholarly journals Risk-Adjusting Mortality in the Nationwide Veterans Affairs Healthcare System

Author(s):  
Hallie C Prescott ◽  
Rajendra P Kadel ◽  
Julie R Eyman ◽  
Ron Freyberg ◽  
Matthew Quarrick ◽  
...  

Abstract Background The US Veterans Affairs (VA) healthcare system began reporting risk-adjusted mortality for intensive care (ICU) admissions in 2005. However, while the VA’s mortality model has been updated and adapted for risk-adjustment of all inpatient hospitalizations, recent model performance has not been published. We sought to assess the current performance of VA’s 4 standardized mortality models: acute care 30-day mortality (acute care SMR-30); ICU 30-day mortality (ICU SMR-30); acute care in-hospital mortality (acute care SMR); and ICU in-hospital mortality (ICU SMR). Methods Retrospective cohort study with split derivation and validation samples. Standardized mortality models were fit using derivation data, with coefficients applied to the validation sample. Nationwide VA hospitalizations that met model inclusion criteria during fiscal years 2017–2018(derivation) and 2019 (validation) were included. Model performance was evaluated using c-statistics to assess discrimination and comparison of observed versus predicted deaths to assess calibration. Results Among 1,143,351 hospitalizations eligible for the acute care SMR-30 during 2017–2019, in-hospital mortality was 1.8%, and 30-day mortality was 4.3%. C-statistics for the SMR models in validation data were 0.870 (acute care SMR-30); 0.864 (ICU SMR-30); 0.914 (acute care SMR); and 0.887 (ICU SMR). There were 16,036 deaths (4.29% mortality) in the SMR-30 validation cohort versus 17,458 predicted deaths (4.67%), reflecting 0.38% over-prediction. Across deciles of predicted risk, the absolute difference in observed versus predicted percent mortality was a mean of 0.38%, with a maximum error of 1.81% seen in the highest-risk decile. Conclusions and Relevance The VA’s SMR models, which incorporate patient physiology on presentation, are highly predictive and demonstrate good calibration both overall and across risk deciles. The current SMR models perform similarly to the initial ICU SMR model, indicating appropriate adaption and re-calibration.

BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e040778
Author(s):  
Vineet Kumar Kamal ◽  
Ravindra Mohan Pandey ◽  
Deepak Agrawal

ObjectiveTo develop and validate a simple risk scores chart to estimate the probability of poor outcomes in patients with severe head injury (HI).DesignRetrospective.SettingLevel-1, government-funded trauma centre, India.ParticipantsPatients with severe HI admitted to the neurosurgery intensive care unit during 19 May 2010–31 December 2011 (n=946) for the model development and further, data from same centre with same inclusion criteria from 1 January 2012 to 31 July 2012 (n=284) for the external validation of the model.Outcome(s)In-hospital mortality and unfavourable outcome at 6 months.ResultsA total of 39.5% and 70.7% had in-hospital mortality and unfavourable outcome, respectively, in the development data set. The multivariable logistic regression analysis of routinely collected admission characteristics revealed that for in-hospital mortality, age (51–60, >60 years), motor score (1, 2, 4), pupillary reactivity (none), presence of hypotension, basal cistern effaced, traumatic subarachnoid haemorrhage/intraventricular haematoma and for unfavourable outcome, age (41–50, 51–60, >60 years), motor score (1–4), pupillary reactivity (none, one), unequal limb movement, presence of hypotension were the independent predictors as its 95% confidence interval (CI) of odds ratio (OR)_did not contain one. The discriminative ability (area under the receiver operating characteristic curve (95% CI)) of the score chart for in-hospital mortality and 6 months outcome was excellent in the development data set (0.890 (0.867 to 912) and 0.894 (0.869 to 0.918), respectively), internal validation data set using bootstrap resampling method (0.889 (0.867 to 909) and 0.893 (0.867 to 0.915), respectively) and external validation data set (0.871 (0.825 to 916) and 0.887 (0.842 to 0.932), respectively). Calibration showed good agreement between observed outcome rates and predicted risks in development and external validation data set (p>0.05).ConclusionFor clinical decision making, we can use of these score charts in predicting outcomes in new patients with severe HI in India and similar settings.


Author(s):  
Hanaa Torkey ◽  
Elhossiny Ibrahim ◽  
EZZ El-Din Hemdan ◽  
Ayman El-Sayed ◽  
Marwa A. Shouman

AbstractCommunication between sensors spread everywhere in healthcare systems may cause some missing in the transferred features. Repairing the data problems of sensing devices by artificial intelligence technologies have facilitated the Medical Internet of Things (MIoT) and its emerging applications in Healthcare. MIoT has great potential to affect the patient's life. Data collected from smart wearable devices size dramatically increases with data collected from millions of patients who are suffering from diseases such as diabetes. However, sensors or human errors lead to missing some values of the data. The major challenge of this problem is how to predict this value to maintain the data analysis model performance within a good range. In this paper, a complete healthcare system for diabetics has been used, as well as two new algorithms are developed to handle the crucial problem of missed data from MIoT wearable sensors. The proposed work is based on the integration of Random Forest, mean, class' mean, interquartile range (IQR), and Deep Learning to produce a clean and complete dataset. Which can enhance any machine learning model performance. Moreover, the outliers repair technique is proposed based on dataset class detection, then repair it by Deep Learning (DL). The final model accuracy with the two steps of imputation and outliers repair is 97.41% and 99.71% Area Under Curve (AUC). The used healthcare system is a web-based diabetes classification application using flask to be used in hospitals and healthcare centers for the patient diagnosed with an effective fashion.


Author(s):  
Brian E Dixon ◽  
Kimberly M Judon ◽  
Ashley L Schwartzkopf ◽  
Vivian M Guerrero ◽  
Nicholas S Koufacos ◽  
...  

Abstract Objective To examine the effectiveness of event notification service (ENS) alerts on health care delivery processes and outcomes for older adults. Materials and methods We deployed ENS alerts in 2 Veterans Affairs (VA) medical centers using regional health information exchange (HIE) networks from March 2016 to December 2019. Alerts targeted VA-based primary care teams when older patients (aged 65+ years) were hospitalized or attended emergency departments (ED) outside the VA system. We employed a concurrent cohort study to compare postdischarge outcomes between patients whose providers received ENS alerts and those that did not (usual care). Outcome measures included: timely follow-up postdischarge (actual phone call within 7 days or an in-person primary care visit within 30 days) and all-cause inpatient or ED readmission within 30 days. Generalized linear mixed models, accounting for clustering by primary care team, were used to compare outcomes between groups. Results Compared to usual care, veterans whose primary care team received notification of non-VA acute care encounters were 4 times more likely to have phone contact within 7 days (AOR = 4.10, P < .001) and 2 times more likely to have an in-person visit within 30 days (AOR = 1.98, P = .007). There were no significant differences between groups in hospital or ED utilization within 30 days of index discharge (P = .057). Discussion ENS was associated with increased timely follow-up following non-VA acute care events, but there was no associated change in 30-day readmission rates. Optimization of ENS processes may be required to scale use and impact across health systems. Conclusion Given the importance of ENS to the VA and other health systems, this study provides guidance for future research on ENS for improving care coordination and population outcomes. Trial Registration ClinicalTrials.gov NCT02689076. “Regional Data Exchange to Improve Care for Veterans After Non-VA Hospitalization.” Registered February 23, 2016.


2018 ◽  
Vol 25 (11) ◽  
pp. 1270-1279 ◽  
Author(s):  
J. R. Kramer ◽  
A. Puenpatom ◽  
K. F. Erickson ◽  
Y. Cao ◽  
D. Smith ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1511-1511
Author(s):  
Dylan J. Peterson ◽  
Nicolai P. Ostberg ◽  
Douglas W. Blayney ◽  
James D. Brooks ◽  
Tina Hernandez-Boussard

1511 Background: Acute care use is one of the largest drivers of cancer care costs. OP-35: Admissions and Emergency Department Visits for Patients Receiving Outpatient Chemotherapy is a CMS quality measure that will affect reimbursement based on unplanned inpatient admissions (IP) and emergency department (ED) visits. Targeted measures can reduce preventable acute care use but identifying which patients might benefit remains challenging. Prior predictive models have made use of a limited subset of the data available in the Electronic Health Record (EHR). We hypothesized dense, structured EHR data could be used to train machine learning algorithms to predict risk of preventable ED and IP visits. Methods: Patients treated at Stanford Health Care and affiliated community care sites between 2013 and 2015 who met inclusion criteria for OP-35 were selected from our EHR. Preventable ED or IP visits were identified using OP-35 criteria. Demographic, diagnosis, procedure, medication, laboratory, vital sign, and healthcare utilization data generated prior to chemotherapy treatment were obtained. A random split of 80% of the cohort was used to train a logistic regression with least absolute shrinkage and selection operator regularization (LASSO) model to predict risk for acute care events within the first 180 days of chemotherapy. The remaining 20% were used to measure model performance by the Area Under the Receiver Operator Curve (AUROC). Results: 8,439 patients were included, of whom 35% had one or more preventable event within 180 days of starting chemotherapy. Our LASSO model classified patients at risk for preventable ED or IP visits with an AUROC of 0.783 (95% CI: 0.761-0.806). Model performance was better for identifying risk for IP visits than ED visits. LASSO selected 125 of 760 possible features to use when classifying patients. These included prior acute care visits, cancer stage, race, laboratory values, and a diagnosis of depression. Key features for the model are shown in the table. Conclusions: Machine learning models trained on a large number of routinely collected clinical variables can identify patients at risk for acute care events with promising accuracy. These models have the potential to improve cancer care outcomes, patient experience, and costs by allowing for targeted preventative interventions. Future work will include prospective and external validation in other healthcare systems.[Table: see text]


BMJ Open ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. e037161
Author(s):  
Hyunmin Ahn

ObjectivesWe investigated the usefulness of machine learning artificial intelligence (AI) in classifying the severity of ophthalmic emergency for timely hospital visits.Study designThis retrospective study analysed the patients who first visited the Armed Forces Daegu Hospital between May and December 2019. General patient information, events and symptoms were input variables. Events, symptoms, diagnoses and treatments were output variables. The output variables were classified into four classes (red, orange, yellow and green, indicating immediate to no emergency cases). About 200 cases of the class-balanced validation data set were randomly selected before all training procedures. An ensemble AI model using combinations of fully connected neural networks with the synthetic minority oversampling technique algorithm was adopted.ParticipantsA total of 1681 patients were included.Major outcomesModel performance was evaluated using accuracy, precision, recall and F1 scores.ResultsThe accuracy of the model was 99.05%. The precision of each class (red, orange, yellow and green) was 100%, 98.10%, 92.73% and 100%. The recalls of each class were 100%, 100%, 98.08% and 95.33%. The F1 scores of each class were 100%, 99.04%, 95.33% and 96.00%.ConclusionsWe provided support for an AI method to classify ophthalmic emergency severity based on symptoms.


2020 ◽  
Vol 75 (11) ◽  
pp. 1855
Author(s):  
Akash Kataruka ◽  
Dhruv Mahtta ◽  
Julia M. Akeroyd ◽  
Ravi Hira ◽  
Dhruv Kazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document