Human amniotic fluid-derived stem cells can differentiate into hepatocyte-like cells in vitro and in vivo

2011 ◽  
Vol 47 (9) ◽  
pp. 601-608 ◽  
Author(s):  
Hui Liu ◽  
Da-qing Liu ◽  
Bao-wei Li ◽  
Li-dong Guan ◽  
Zhi-feng Yan ◽  
...  
2009 ◽  
Vol 18 (7) ◽  
pp. 1003-1012 ◽  
Author(s):  
Angela E. Donaldson ◽  
Jingli Cai ◽  
Ming Yang ◽  
Lorraine Iacovitti

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Monika Glemžaitė ◽  
Rūta Navakauskienė

Osteogenic differentiation of human amniotic fluid derived mesenchymal stem cells (AF-MSCs) has been widely studiedin vitroandin vivoas a potential tool for regenerative medicine and tissue engineering. While most of the studies analyze changes in transcriptional profile during differentiation to date there is not much information regarding epigenetic changes in AF-MSCs during differentiation. The aim of our study was to evaluate epigenetic changes during osteogenic differentiation of AF-MS cells. Isolated AF-MSCs were characterized morphologically and osteogenic differentiation was confirmed by cell staining and determining expression of alkaline phosphatase and osteopontin by RT-qPCR. Variation in gene expression levels of pluripotency markers and specific microRNAs were also evaluated. Analysis of epigenetic changes revealed that levels of chromatin modifying enzymes such as Polycomb repressive complex 2 (PRC2) proteins (EZH2 and SUZ12), DNMT1, HDAC1, and HDAC2 were reduced after osteogenic differentiation of AF-MSCs. We demonstrated that the level of specific histone markers keeping active state of chromatin (H3K4me3, H3K9Ac, and others) increased and markers of repressed state of chromatin (H3K27me3) decreased. Our results show that osteogenic differentiation of AF-MSCs is conducted by various epigenetic alterations resulting in global chromatin remodeling and provide insights for further epigenetic investigations in human AF-MSCs.


2014 ◽  
Vol 357 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Tullia Maraldi ◽  
Laura Bertoni ◽  
Massimo Riccio ◽  
Manuela Zavatti ◽  
Gianluca Carnevale ◽  
...  

2010 ◽  
Vol 16 (6) ◽  
pp. 1925-1936 ◽  
Author(s):  
Yi-Chun Yeh ◽  
Hao-Ji Wei ◽  
Wen-Yu Lee ◽  
Chu-Leng Yu ◽  
Yen Chang ◽  
...  

2013 ◽  
Vol 45 (8) ◽  
pp. 669-676 ◽  
Author(s):  
Gianluca Carnevale ◽  
Massimo Riccio ◽  
Alessandra Pisciotta ◽  
Francesca Beretti ◽  
Tullia Maraldi ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tullia Maraldi ◽  
Marianna Guida ◽  
Manuela Zavatti ◽  
Elisa Resca ◽  
Laura Bertoni ◽  
...  

Human amniotic fluid stem cells (AFSC) are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expandin vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS) and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(P)H oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4) depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.


Blood ◽  
2009 ◽  
Vol 113 (17) ◽  
pp. 3953-3960 ◽  
Author(s):  
Andrea Ditadi ◽  
Paolo de Coppi ◽  
Olivier Picone ◽  
Laetitia Gautreau ◽  
Rim Smati ◽  
...  

Abstract We have isolated c-Kit+Lin− cells from both human and murine amniotic fluid (AF) and investigated their hematopoietic potential. In vitro, the c-Kit+Lin− population in both species displayed a multilineage hematopoietic potential, as demonstrated by the generation of erythroid, myeloid, and lymphoid cells. In vivo, cells belonging to all 3 hematopoietic lineages were found after primary and secondary transplantation of murine c-Kit+Lin− cells into immunocompromised hosts, thus demonstrating the ability of these cells to self-renew. Gene expression analysis of c-Kit+ cells isolated from murine AF confirmed these results. The presence of cells with similar characteristics in the surrounding amnion indicates the possible origin of AF c-Kit+Lin− cells. This is the first report showing that cells isolated from the AF do have hematopoietic potential; our results support the idea that AF may be a new source of stem cells for therapeutic applications.


2010 ◽  
Vol 7 (2) ◽  
pp. 364-380 ◽  
Author(s):  
Sveva Bollini ◽  
Michela Pozzobon ◽  
Muriel Nobles ◽  
Johannes Riegler ◽  
Xuebin Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document