DSCAM-AS1 mediates pro-hypertrophy role of GRK2 in cardiac hypertrophy aggravation via absorbing miR-188-5p

2020 ◽  
Vol 56 (4) ◽  
pp. 286-295
Author(s):  
Huiqin Chen ◽  
Kefeng Cai
Keyword(s):  
2015 ◽  
Vol 65 (10) ◽  
pp. A902
Author(s):  
Senthil Selvaraj ◽  
Brij Singh ◽  
Christian Bollensdorff ◽  
Jassim Al Suwaidi ◽  
Magdi Yacoub

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Montiel ◽  
R Bella ◽  
L Michel ◽  
E Robinson ◽  
J.C Jonas ◽  
...  

Abstract Background Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but so far, strategies using systemic anti-oxidants have generally failed to prevent it. Aquaporins are a family of transmembrane water channels with thirteen isoforms currently known. Some isoforms have been implicated in oxidant signaling. AQP1 is the most abundant aquaporin in cardiovascular tissues but its specific role in cardiac remodeling remains unknown. Purpose We tested the role of AQP1 as a key regulator of oxidant-mediated cardiac remodeling amenable to targeted pharmacological therapy. Methods We used mice with genetic deletion of Aqp1 (and wild-type littermate), as well as primary isolates from the same mice and human iPSC/Engineered Heart Tissue to test the role of AQP1 in pro-hypertrophic signaling. Human cardiac myocyte-specific (PCM1+) expression of AQP's and genes involved in hypertrophic remodeling was studied by RNAseq and bioinformatic GO pathway analysis. Results RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalizes with the NADPH oxidase-2 (NOX2) and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2. Deletion of Aqp1 or selective blockade of AQP1 intra-subunit pore (with Bacopaside II) inhibits H2O2 transport in mouse and human cells and rescues the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. This protective effect is due to loss of transmembrane transport of H2O2, but not water, through the intra-subunit pore of AQP1. Treatment of mice with clinically-approved Bacopaside extract (CDRI08) inhibitor of AQP1 attenuates cardiac hypertrophy and fibrosis. Conclusion We provide the first demonstration that AQP1 functions as an aqua-peroxiporin in primary rodent and human cardiac parenchymal cells. We show that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 through the AQP1 water channel. Our studies open the way to complement the therapeutic armamentarium with specific blockers of AQP1 for the prevention of adverse remodeling in many cardiovascular diseases leading to heart failure. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): FRS-FNRS, Welbio


1999 ◽  
Vol 83 (12) ◽  
pp. 53-57 ◽  
Author(s):  
Tsutomu Yamazaki ◽  
Issei Komuro ◽  
Yoshio Yazaki

2012 ◽  
Vol 67 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Bhoomika R. Goyal ◽  
Anita A. Mehta
Keyword(s):  

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Michelle A Hardyman ◽  
Stephen J Fuller ◽  
Daniel N Meijles ◽  
Kerry A Rostron ◽  
Sam J Leonard ◽  
...  

Introduction: Raf kinases lie upstream of ERK1/2 with BRaf being the most highly expressed and having the highest basal activity. V600E BRaf mutations constitutively activate ERK1/2 and are common in cancer. The role of BRaf in the adult heart is yet to be established. ERK1/2 regulate cardiomyocyte gene expression, promoting cardiac hypertrophy and cardioprotection, but effects of ERK1/2 may depend on signal strength. Hypothesis: Our hypotheses are that BRaf is critical in regulating ERK1/2 signaling in cardiomyocytes and, whilst moderate ERK1/2 activity is beneficial, excessive ERK1/2 activity is detrimental to the heart. Methods: We generated heterozygote mice for tamoxifen- (Tam-) inducible cardiomyocyte-specific knockin of V600E in the endogenous BRaf gene. Mice (12 wks) received 2 injections of Tam or vehicle on consecutive days (n=4-10 per group). Kinase activities and mRNA expression were assessed by immunoblotting and qPCR. Echocardiography was performed (Vevo2100). M-mode images (short axis view) were analyzed; data for each mouse were normalized to the mean of 2 baseline controls. Results: V600E knockin did not affect overall BRaf or cRaf levels in mouse hearts, but significantly increased ERK1/2 activities within 48 h (1.51±0.05 fold). Concurrently, mRNAs for hypertrophic gene markers including BNP and immediate early genes (IEGs) increased signficantly. At 72 h, expression of BNP, Fosl1, Myc, Ereg and CTGF increased further, other IEGs (Jun, Fos, Egr1, Atf3) declined, and ANF was upregulated. In contrast, expression of α and β myosin heavy chain mRNAs was substantially downregulated (0.46/0.41±0.05 relative to controls). Within 72 h, left ventricular (LV) mass and diastolic LV wall thickness had increased (1.23±0.05 relative to controls), but cardiac function was severely compromised with significant decreases in ejection fraction and cardiac output (0.53/0.68±0.09 relative to controls) associated with increased LV internal diameters and cardiac volumes. Conclusions: Endogenous cardiomyocyte BRaf is sufficient to activate ERK1/2 in mouse hearts and induce cardiac hypertrophy associated with dynamic temporal changes in gene expression. However, excessive activation of ERK1/2 in isolation is detrimental to cardiac function.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Shiridhar Kashyap ◽  
Olena Kondrachuk ◽  
Manish K Gupta

Background: Heart failure is the one of the leading causes of death in HIV patients. Application ofantiretroviral therapy (ART) raise the life expectancy of HIV patients, but survival population show higherrisk of cardiovascular disorder. The aim of this study is to understand the underlying molecular mechanismof antiretroviral drugs (ARVs) induced cardiac dysfunction in HIV patients. Method and Results: To determine the mechanism of ARVs induced cardiac dysfunction, we performeda global transcriptomic profiling in primary cardiomyocytes treated with ARVs. Differentially expressedgenes were identified by DESeq2. Functional enrichment analysis of differentially expressed genes wereperformed using clusterProfiler R and ingenuity pathway analysis. Our data show that ARVs treatmentcauses upregulation of several biological function associated with cardiotoxicity and heart failure.Interestingly, we found that ARV drugs treatment significantly upregulates the expression of a set of genesinvolved cardiac enlargement and hypertrophy in the heart. Global gene expression data were validated inthe cardiac tissue isolated from the HIV patients having history of ART treatment. Interestingly, we foundthat the homeodomain-containing only protein homeobox (HOPX) expression was significantly increasedin transcriptional and translational level in cardiomyocytes treated with ARV drugs as well as in heart tissueof ART treated HIV patients. Further, we performed adenovirus mediated gain in and siRNA mediatedknockdown approach to determine the role of HOPX in ARVs mediated cardiac hypertrophy and epigeneticmodifications. Mechanistically, we found that HOPX expression level plays a key role in ARV drugsmediated increased cardiomyocytes cell size and reduced acetylation level of histone 3 at lysine 9 and lysine27. Furthermore, we found that knockdown of HOPX gene expression blunted the hypertrophy effect ofARV drugs in cardiomyocytes. It is known that HOPX reduces cellular acetylation level through interactionwith HDAC2. In our study, we found that histone deacetylase inhibitor Trichostatin A can restore cellularacetylation level in presence of ARVs. Conclusion: ART treatment causes cardiotoxicity through regulation of fatal gene expression incardiomyocytes and in adult heart. Additionally, we found that HOPX expression is critical in ARVsmediated cardiomyocytes remodeling and epigenetic modification.


2021 ◽  
Vol 66 (4) ◽  
pp. 273-283
Author(s):  
Zhousheng Jin ◽  
Fangfang Xia ◽  
Jiaojiao Dong ◽  
Tingting Lin ◽  
Yaoyao Cai ◽  
...  

Glucocorticoid excess often causes a variety of cardiovascular complications, including hypertension, atherosclerosis, and cardiac hypertrophy. To abrogate its cardiac side effects, it is necessary to fully disclose the pathophysiological role of glucocorticoid in cardiac remodelling. Previous clinical and experimental studies have found that omentin-1, one of the adipokines, has beneficial effects in cardiovascular diseases, and is closely associated with metabolic disorders. However, there is no evidence to address the potential role of omentin-1 in glucocorticoid excess-induced cardiac injuries. To uncover the links, the present study utilized rat model with glucocorticoid-induced cardiac injuries and clinical patients with abnormal cardiac function. Chronic administration of glucocorticoid excess reduced rat serum omentin-1 concentration, which closely correlated with cardiac functional parameters. Intravenous administration of adeno-associated virus encoding omentin-1 upregulated the circulating omentin-1 level and attenuated glucocorticoid excess-induced cardiac hypertrophy and functional disorders. Overexpression of omentin-1 also improved cardiac mitochondrial function, including the reduction of lipid deposits, induction of mitochondrial biogenesis, and enhanced mitochondrial activities. Mechanistically, omentin-1 phosphorylated and activated the GSK3β pathway in the heart. From a study of 28 patients with Cushing’s syndrome and 23 healthy subjects, the plasma level of glucocorticoid was negatively correlated with omentin-1, and was positively associated with cardiac ejection fraction and fractional shortening. Collectively, the present study provided a novel role of omentin-1 in glucocorticoid excess-induced cardiac injuries and found that the omentin-1/GSK3β pathway was a potential therapeutic target in combating the side effects of glucocorticoid.


1995 ◽  
Vol 15 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Hiroaki Suzuki ◽  
Liliana Schaefer ◽  
Hong Ling ◽  
Roland M. Schaefer ◽  
Jobst Dämmrich ◽  
...  

2012 ◽  
pp. 325-340
Author(s):  
Paramjit S. Tappia ◽  
Adriana Adameova ◽  
Naranjan S. Dhalla

Sign in / Sign up

Export Citation Format

Share Document