scholarly journals A CRITICAL ROLE OF TRPC1-ORAI1-STIM1 MEDIATED STORE OPERATED CALCIUM ENTRY IN CARDIAC HYPERTROPHY

2015 ◽  
Vol 65 (10) ◽  
pp. A902
Author(s):  
Senthil Selvaraj ◽  
Brij Singh ◽  
Christian Bollensdorff ◽  
Jassim Al Suwaidi ◽  
Magdi Yacoub
2019 ◽  
Vol 116 (3) ◽  
pp. 237a-238a
Author(s):  
Savannah J. West ◽  
Qiaochu Wang ◽  
Michael X. Zhu ◽  
Askar M. Akimzhanov ◽  
Darren Boehning

Author(s):  
Francisco Javier Martín-Romero ◽  
Aida M. López-Guerrero ◽  
Ignacio S. Álvarez ◽  
Eulalia Pozo-Guisado

2002 ◽  
Vol 157 (7) ◽  
pp. 1267-1278 ◽  
Author(s):  
Donna L. Cioffi ◽  
Timothy M. Moore ◽  
Jerry Schaack ◽  
Judy R. Creighton ◽  
Dermot M.F. Cooper ◽  
...  

Acute transitions in cytosolic calcium ([Ca2+]i) through store-operated calcium entry channels catalyze interendothelial cell gap formation that increases permeability. However, the rise in [Ca2+]i only disrupts barrier function in the absence of a rise in cAMP. Discovery that type 6 adenylyl cyclase (AC6; EC 4.6.6.1) is inhibited by calcium entry through store-operated calcium entry pathways provided a plausible explanation for how inflammatory [Ca2+]i mediators may decrease cAMP necessary for endothelial cell gap formation. [Ca2+]i mediators only modestly decrease global cAMP concentrations and thus, to date, the physiological role of AC6 is unresolved. Present studies used an adenoviral construct that expresses the calcium-stimulated AC8 to convert normal calcium inhibition into stimulation of cAMP, within physiologically relevant concentration ranges. Thrombin stimulated a dose-dependent [Ca2+]i rise in both pulmonary artery (PAECs) and microvascular (PMVEC) endothelial cells, and promoted intercellular gap formation in both cell types. In PAECs, gap formation was progressive over 2 h, whereas in PMVECs, gap formation was rapid (within 10 min) and gaps resealed within 2 h. Expression of AC8 resulted in a modest calcium stimulation of cAMP, which virtually abolished thrombin-induced gap formation in PMVECs. Findings provide the first direct evidence that calcium inhibition of AC6 is essential for endothelial gap formation.


2015 ◽  
Vol 473 (1) ◽  
pp. 1-5 ◽  
Author(s):  
G. Cristina Brailoiu ◽  
Elena Deliu ◽  
Linda M. Console-Bram ◽  
Jonathan Soboloff ◽  
Mary E. Abood ◽  
...  

We provide evidence that cocaine induces sigma-1 receptor-mediated inhibition of store-operated calcium entry (SOCE) in rat brain microvascular endothelial cells. Thus, we reveal sigma-1 receptors as SOCE blockers, adding novel insight regarding endothelial effects of cocaine and endogenous SOCE modulation.


2017 ◽  
Vol 313 (3) ◽  
pp. H584-H596 ◽  
Author(s):  
Junco Shibayama Warren ◽  
Shin-ichi Oka ◽  
Daniela Zablocki ◽  
Junichi Sadoshima

Studies using omics-based approaches have advanced our knowledge of metabolic remodeling in cardiac hypertrophy and failure. Metabolomic analysis of the failing heart has revealed global changes in mitochondrial substrate metabolism. Peroxisome proliferator-activated receptor-α (PPARα) plays a critical role in synergistic regulation of cardiac metabolism through transcriptional control. Metabolic reprogramming via PPARα signaling in heart failure ultimately propagates into myocardial energetics. However, emerging evidence suggests that the expression level of PPARα per se does not always explain the energetic state in the heart. The transcriptional activities of PPARα are dynamic, yet highly coordinated. An additional level of complexity in the PPARα regulatory mechanism arises from its ability to interact with various partners, which ultimately determines the metabolic phenotype of the diseased heart. This review summarizes our current knowledge of the PPARα regulatory mechanisms in cardiac metabolism and the possible role of PPARα in epigenetic modifications in the diseased heart. In addition, we discuss how metabolomics can contribute to a better understanding of the role of PPARα in the progression of cardiac hypertrophy and failure.


2021 ◽  
Vol 12 ◽  
Author(s):  
Benedito M. Santos ◽  
Bárbara K. M. Dias ◽  
Myna Nakabashi ◽  
Celia R. S. Garcia

Previously we have reported that the G protein-coupled receptor (GPCR)-like PfSR25 in Plasmodium falciparum is a potassium (K+) sensor linked to intracellular calcium signaling and that knockout parasites (PfSR25-) are more susceptible to oxidative stress and antimalarial compounds. Here, we explore the potential role of PfSR25 in susceptibility to the antimalarial compounds atovaquone, chloroquine, dihydroartemisinin, lumefantrine, mefloquine, piperaquine, primaquine, and pyrimethamine and the Medicine for Malaria Venture (MMV) compounds previously described to act on egress/invasion (MMV006429, MMV396715, MMV019127, MMV665874, MMV665878, MMV665785, and MMV66583) through comparative assays with PfSR25- and 3D7 parasite strains, using flow cytometry assays. The IC50 and IC90 results show that lumefantrine and piperaquine have greater activity on the PfSR25- parasite strain when compared to 3D7. For MMV compounds, we found no differences between the strains except for the compound MMV665831, which we used to investigate the store-operated calcium entry (SOCE) mechanism. The results suggest that PfSR25 may be involved in the mechanism of action of the antimalarials lumefantrine and piperaquine. Our data clearly show that MMV665831 does not affect calcium entry in parasites after we depleted their internal calcium pools with thapsigargin. The results demonstrated here shed light on new possibilities on the antimalarial mechanism, bringing evidence of the involvement of the GPCR-like PfSR25.


Sign in / Sign up

Export Citation Format

Share Document