Omentin-1 attenuates glucocorticoid-induced cardiac injury by phosphorylating GSK3β

2021 ◽  
Vol 66 (4) ◽  
pp. 273-283
Author(s):  
Zhousheng Jin ◽  
Fangfang Xia ◽  
Jiaojiao Dong ◽  
Tingting Lin ◽  
Yaoyao Cai ◽  
...  

Glucocorticoid excess often causes a variety of cardiovascular complications, including hypertension, atherosclerosis, and cardiac hypertrophy. To abrogate its cardiac side effects, it is necessary to fully disclose the pathophysiological role of glucocorticoid in cardiac remodelling. Previous clinical and experimental studies have found that omentin-1, one of the adipokines, has beneficial effects in cardiovascular diseases, and is closely associated with metabolic disorders. However, there is no evidence to address the potential role of omentin-1 in glucocorticoid excess-induced cardiac injuries. To uncover the links, the present study utilized rat model with glucocorticoid-induced cardiac injuries and clinical patients with abnormal cardiac function. Chronic administration of glucocorticoid excess reduced rat serum omentin-1 concentration, which closely correlated with cardiac functional parameters. Intravenous administration of adeno-associated virus encoding omentin-1 upregulated the circulating omentin-1 level and attenuated glucocorticoid excess-induced cardiac hypertrophy and functional disorders. Overexpression of omentin-1 also improved cardiac mitochondrial function, including the reduction of lipid deposits, induction of mitochondrial biogenesis, and enhanced mitochondrial activities. Mechanistically, omentin-1 phosphorylated and activated the GSK3β pathway in the heart. From a study of 28 patients with Cushing’s syndrome and 23 healthy subjects, the plasma level of glucocorticoid was negatively correlated with omentin-1, and was positively associated with cardiac ejection fraction and fractional shortening. Collectively, the present study provided a novel role of omentin-1 in glucocorticoid excess-induced cardiac injuries and found that the omentin-1/GSK3β pathway was a potential therapeutic target in combating the side effects of glucocorticoid.

2020 ◽  
Vol 10 (01) ◽  
pp. e104-e109
Author(s):  
Antonio Molina-Carballo ◽  
Antonio Emilio Jerez-Calero ◽  
Antonio Muñoz-Hoyos

AbstractMelatonin, produced in every cell that possesses mitochondria, acts as an endogenous free radical scavenger, and improves energetic metabolism and immune function, by complex molecular crosstalk with other intracellular compounds. There is greatly increasing evidence regarding beneficial effects of acute and chronic administration of high melatonin doses, in infectious, developmental, and degenerative pathologies, as an endothelial cell and every cell protectant.


2018 ◽  
Vol 24 (19) ◽  
pp. 2180-2187 ◽  
Author(s):  
Mohammad Shamsul Ola ◽  
Dalia Al-Dosari ◽  
Abdullah S. Alhomida

Diabetic Retinopathy (DR) is one of the leading causes of decreased vision and blindness in developed countries. Diabetes-induced metabolic disorder is believed to increase oxidative stress in the retina. This results in deleterious change through dysregulation of cellular physiology that damages both neuronal and vascular cells. In this review, we first highlight the evidence of potential metabolic sources and pathways which increase oxidative stress that contribute to retinal pathology in diabetes. As oxidative stress is a central factor in the pathophysiology of DR, antioxidants therapy would be beneficial towards preventing the retinal damage. A number of experimental studies by our group and others showed that dietary flavonoids cause reduction in increased oxidative stress and other beneficial effects in diabetic retina. We then discuss the beneficial effects of the six major flavonoid families, such as flavanones, flavanols, flavonols, isoflavones, flavones and anthocyanins, which have been studied to improve retinal damage. Flavanoids, being known antioxidants, may ameliorate the retinal degenerative factors including apoptosis, inflammation and neurodegeneration in diabetes. Therefore, intake of potential dietary flavonoids would limit oxidative stress and thereby prevent the retinal damage, and subsequently the development of DR.


2016 ◽  
Vol 21 (4) ◽  
pp. 320-324 ◽  
Author(s):  
Mohammad Tahvilzadeh ◽  
Mannan Hajimahmoodi ◽  
Roja Rahimi

Date palm pollen (DPP) is the male reproductive dust of palm flowers used as dietary supplement especially as aphrodisiac and fertility enhancer in both women and men from ancient times. Although there are few clinical trials evaluating the beneficial effects of DPP in humans, various experimental studies have been conducted on the reproductive effects of DPP. Among the compounds isolated from DPP are amino acids, fatty acids, flavonoids, saponins, and estroles. The present review summarizes comprehensive information concerning the phytochemistry and pharmacological activities of DPP and its application in fertility disorders.


2018 ◽  
Vol 24 (2) ◽  
pp. 227-238 ◽  
Author(s):  
Vanessa Castelli ◽  
Davide Grassi ◽  
Raffaella Bocale ◽  
Michele d'Angelo ◽  
Andrea Antonosante ◽  
...  

Background: The aging of western societies is leading to a dramatic increase in the prevalence of chronic conditions, threatening the health status and then the sustainability of our healthcare systems. In particular, dementia is being increasingly recognized as a public health priority, given its enormous socioeconomic burdens further amplified by the absence of treatments really effective in improving the clinical course of the disease. Methods: The question of whether some degree of cognitive deterioration is an inevitable part of aging or should be considered as a pathological pre-stage of dementia is currently debated. This is a field in need of research because accelerated brain aging as well as further decline in cognition might be preventable in the early stages of cognitive impairment. Herein, we discuss evidence from clinical and experimental studies on the role of polyphenols in preserving cognitive performance across life. Results: In recent years, the possibility of favorably influencing the cognitive trajectory through promotion of lifestyle modifications has been increasingly investigated. In particular, the relationship between nutritional habits and brain health has attracted special attention. Dietary polyphenols exhibit a strong potential to promote brain due to their efficacy in protecting neurons against oxidative stress-induced injury, suppressing neuroinflammation and in ameliorating cardiovascular risk factor control and cardiovascular function thus counteracting neurotoxicity and neurodegeneration. Conclusion: Emerging evidence suggest that dietary polyphenols, in particular flavonoids, may exert beneficial effects on the central nervous system thus representing a potential tool to preserve cognitive performance throught senescence.


Author(s):  
Ilaria Del Gaudio ◽  
Luisa Rubinelli ◽  
Linda Sasset ◽  
Christian Wadsack ◽  
Timothy Hla ◽  
...  

Background Most of the circulating sphingosine‐1‐phosphate (S1P) is bound to ApoM (apolipoprotein M) of high‐density lipoprotein (HDL) and mediates many beneficial effects of HDL on the vasculature via G protein–coupled S1P receptors. HDL‐bound S1P is decreased in atherosclerosis, myocardial infarction, and diabetes mellitus. In addition to being the target, the endothelium is a source of S1P, which is transported outside of the cells by Spinster‐2, contributing to circulating S1P as well as to local signaling. Mice lacking endothelial S1P receptor 1 are hypertensive, suggesting a vasculoprotective role of S1P signaling. This study investigates the role of endothelial‐derived S1P and ApoM‐bound S1P in regulating vascular tone and blood pressure. Methods and Results ApoM knockout (ApoM KO) mice and mice lacking endothelial Spinster‐2 (ECKO‐Spns2) were infused with angiotensin II for 28 days. Blood pressure, measured by telemetry and tail‐cuff, was significantly increased in both ECKO‐Spns2 and ApoM KO versus control mice, at baseline and following angiotensin II. Notably, ECKO‐Spns2 presented an impaired vasodilation to flow and blood pressure dipping, which is clinically associated with increased risk for cardiovascular events. In hypertension, both groups presented reduced flow‐mediated vasodilation and some degree of impairment in endothelial NO production, which was more evident in ECKO‐Spns2. Increased hypertension in ECKO‐Spns2 and ApoM KO mice correlated with worsened cardiac hypertrophy versus controls. Conclusions Our study identifies an important role for Spinster‐2 and ApoM‐HDL in blood pressure homeostasis via S1P‐NO signaling and dissects the pathophysiological impact of endothelial‐derived S1P and ApoM of HDL‐bound S1P in hypertension and cardiac hypertrophy.


Author(s):  
Mohammad Amin Shahrbaf ◽  
Mohammadreza Tabary ◽  
Isa Khaheshi

: After the outbreak of COVID-19, many novel drugs have been introduced to improve patients’ condition. Remdesivir and Favipiravir are among the most common drugs used against SARS-CoV-2. Although promising, cardiovascular side effects of these drugs should be considered by physicians and nurses. In this study, we searched databases for assessing the cardiovascular side effects of Remdesivir and Favipiravir. It seems that despite the beneficial effects of these drugs, due to the cardiovascular complications of COVID-19 and cardiovascular side effects of these drugs which can overlap with each other, the use of these drugs can be a challenging issue in the cardiovascular practice.  


Immuno ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 17-29
Author(s):  
Mateusz Kudelko ◽  
Tsz Fung Yip ◽  
Grace Chun Hei Law ◽  
Suki Man Yan Lee

Prevalent coagulopathy and thromboembolism are observed in severe COVID-19 patients with 40% of COVID-19 mortality being associated with cardiovascular complications. Abnormal coagulation parameters are related to poor prognosis in COVID-19 patients. Victims also displayed presence of extensive thrombosis in infected lungs. Vitamin K is well-known to play an essential role in the coagulation system. Latest study revealed an existing correlation between vitamin K deficiency and COVID-19 severity, highlighting a role of vitamin K, probably via coagulation modulation. In agreement, other recent studies also indicated that anti-coagulant treatments can reduce mortality in severe cases. Altogether, potential mechanisms linking COVID-19 with coagulopathy in which vitamin K may exert its modulating role in coagulation related with disease pathogenesis are established. In this review, we discuss the recent evidence supporting COVID-19 as a vascular disease and explore the potential benefits of using vitamin K against COVID-19 to improve disease outcomes.


2019 ◽  
Vol 20 (9) ◽  
pp. 2164 ◽  
Author(s):  
Simona Gallo ◽  
Annapia Vitacolonna ◽  
Alessandro Bonzano ◽  
Paolo Comoglio ◽  
Tiziana Crepaldi

Cardiac hypertrophy is an adaptive and compensatory mechanism preserving cardiac output during detrimental stimuli. Nevertheless, long-term stimuli incite chronic hypertrophy and may lead to heart failure. In this review, we analyze the recent literature regarding the role of ERK (extracellular signal-regulated kinase) activity in cardiac hypertrophy. ERK signaling produces beneficial effects during the early phase of chronic pressure overload in response to G protein-coupled receptors (GPCRs) and integrin stimulation. These functions comprise (i) adaptive concentric hypertrophy and (ii) cell death prevention. On the other hand, ERK participates in maladaptive hypertrophy during hypertension and chemotherapy-mediated cardiac side effects. Specific ERK-associated scaffold proteins are implicated in either cardioprotective or detrimental hypertrophic functions. Interestingly, ERK phosphorylated at threonine 188 and activated ERK5 (the big MAPK 1) are associated with pathological forms of hypertrophy. Finally, we examine the connection between ERK activation and hypertrophy in (i) transgenic mice overexpressing constitutively activated RTKs (receptor tyrosine kinases), (ii) animal models with mutated sarcomeric proteins characteristic of inherited hypertrophic cardiomyopathies (HCMs), and (iii) mice reproducing syndromic genetic RASopathies. Overall, the scientific literature suggests that during cardiac hypertrophy, ERK could be a “good” player to be stimulated or a “bad” actor to be mitigated, depending on the pathophysiological context.


2015 ◽  
Vol 2015 ◽  
pp. 1-25 ◽  
Author(s):  
Rajeshwary Ghosh ◽  
Azra Alajbegovic ◽  
Aldrin V. Gomes

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD.


Sign in / Sign up

Export Citation Format

Share Document