acetylation level
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 19)

H-INDEX

10
(FIVE YEARS 4)

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Shiridhar Kashyap ◽  
Olena Kondrachuk ◽  
Manish K Gupta

Background: Heart failure is the one of the leading causes of death in HIV patients. Application ofantiretroviral therapy (ART) raise the life expectancy of HIV patients, but survival population show higherrisk of cardiovascular disorder. The aim of this study is to understand the underlying molecular mechanismof antiretroviral drugs (ARVs) induced cardiac dysfunction in HIV patients. Method and Results: To determine the mechanism of ARVs induced cardiac dysfunction, we performeda global transcriptomic profiling in primary cardiomyocytes treated with ARVs. Differentially expressedgenes were identified by DESeq2. Functional enrichment analysis of differentially expressed genes wereperformed using clusterProfiler R and ingenuity pathway analysis. Our data show that ARVs treatmentcauses upregulation of several biological function associated with cardiotoxicity and heart failure.Interestingly, we found that ARV drugs treatment significantly upregulates the expression of a set of genesinvolved cardiac enlargement and hypertrophy in the heart. Global gene expression data were validated inthe cardiac tissue isolated from the HIV patients having history of ART treatment. Interestingly, we foundthat the homeodomain-containing only protein homeobox (HOPX) expression was significantly increasedin transcriptional and translational level in cardiomyocytes treated with ARV drugs as well as in heart tissueof ART treated HIV patients. Further, we performed adenovirus mediated gain in and siRNA mediatedknockdown approach to determine the role of HOPX in ARVs mediated cardiac hypertrophy and epigeneticmodifications. Mechanistically, we found that HOPX expression level plays a key role in ARV drugsmediated increased cardiomyocytes cell size and reduced acetylation level of histone 3 at lysine 9 and lysine27. Furthermore, we found that knockdown of HOPX gene expression blunted the hypertrophy effect ofARV drugs in cardiomyocytes. It is known that HOPX reduces cellular acetylation level through interactionwith HDAC2. In our study, we found that histone deacetylase inhibitor Trichostatin A can restore cellularacetylation level in presence of ARVs. Conclusion: ART treatment causes cardiotoxicity through regulation of fatal gene expression incardiomyocytes and in adult heart. Additionally, we found that HOPX expression is critical in ARVsmediated cardiomyocytes remodeling and epigenetic modification.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhihui He ◽  
Huaihuai Peng ◽  
Min Gao ◽  
Guibin Liang ◽  
Menghao Zeng ◽  
...  

Objective. Chronic obstructive pulmonary disease (COPD) is a common chronic disease and develops rapidly into a grave public health problem worldwide. However, what exactly causes the occurrence of COPD remains largely unclear. Here, we are trying to explore whether the high expression of p16 mediated by p300/Sp1 can cause chronic obstructive pulmonary disease through promoting the senescence of endothelial progenitor cells (EPCs). Methods. Peripheral blood EPCs were isolated from nonsmoking non-COPD, smoking non-COPD, and smoking COPD patients. The expressions of p16, p300, and senescence-related genes were detected by RT-PCR and Western Blot. Then, we knocked down or overexpressed Sp1 and p300 and used the ChIP assay to detect the histone H4 acetylation level in the promoter region of p16, CCK8 to detect cell proliferation, flow cytometry to detect the cell cycle, and β-galactosidase staining to count the proportion of senescent cells. Results. The high expression of p16 was found in peripheral blood EPCs of COPD patients; the cigarette smoke extract (CSE) led to the increase of p16. The high expression of p16 in EPCs promoted cell cycle arrest and apoptosis. The CSE-mediated high expression of p16 promoted cell senescence. The expression of p300 was increased in peripheral blood EPCs of COPD patients. Moreover, p300/Sp1 enhanced the histone H4 acetylation level in the promoter region of p16, thereby mediating the senescence of EPCs. And knockdown of p300/Sp1 could rescue CSE-mediated cell senescence. Conclusion. p300/Sp1 enhanced the histone H4 acetylation level in the p16 promoter region to mediate the senescence of EPCs.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Yin Yuan ◽  
Wen Cao ◽  
Hongbing Zhou ◽  
Haixin Qian ◽  
Honggang Wang

AbstractIn eukaryotes, histones and their variants are essential for chromatin structure and function; both play important roles in the regulation of gene transcription, as well as the development of tumors. We aimed to explore the genomics data of hepatocellular carcinoma (HCC), combined with literature analysis, in terms of the histone variant H2A.Z. Cell phenotype assay confirmed the effect of H2A.Z on the proliferation, metastasis, apoptosis, and cell cycle of HCC cells. H2A.Z was shown to function via the tumor dysregulation signaling pathway, with BCL6 as its interacting protein. In addition, the acetylation level of H2A.Z was higher in HCC and was related to tumor formation. We found the acetylation of H2A.Z to be related to and regulated by lincZNF337-AS1. LincZNF337-AS1 was found to bind to H2A.Z and KAT5 at different sites, promoting the acetylation of H2A.Z through KAT5. We concluded that, in HCC, H2A.Z is an oncogene, whose acetylation promotes the transcription of downstream genes, and is regulated by lincZNF331-AS1.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qiao Jin ◽  
Hao Hu ◽  
Siqi Yan ◽  
Long Jin ◽  
Yuliang Pan ◽  
...  

BackgroundWith the development of radiotherapy technology, radiotherapy has been increasingly used to treat primary hepatocellular carcinoma (HCC). However, due to radioresistance and the intolerance of the adjacent organs to radiation, the effects of radiotherapy are often unsatisfactory. Therefore, it is necessary to study radiosensitization in HCC.MethodA microarray was used to analyze the genes that were significantly associated with radiosensitivity. HCC cells, HepG2 and MHCC97H, were subjected to radiation in vitro. Real-time PCR was performed to determine MIR22HG (microRNA22 host gene) and miR-22-5p expression levels. Western blotting was performed to determine histone expression levels. A histone deacetylase (HDAC) whole cell assay was used to determine the activity of HDAC2. MTT, colony formation, 5-ethynyl-2′-deoxyuridine, and wound healing assays were performed to examine the function of MIR22HG and miR-22-5p in cellular radiosensitivity. Chromatin immunoprecipitation-PCR was used to confirm that HDAC2 affects the acetylation level of the MIR22HG promoter region. Finally, animal experiments were performed to demonstrate the in vivo effect of MIR22HG on the radiosensitivity of hepatoma.ResultsIrradiation can up-regulate MIR22HG expression and down-regulate HDAC2 expression. Inhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region and up-regulates MIR22HG expression. MIR22HG can increase radiosensitivity via miR-22-5p in HCC.ConclusionInhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region, thereby up-regulating the expression of MIR22HG and promoting the production of miR-22-5p, and ultimately increasing the sensitivity of liver cancer radiotherapy.


2021 ◽  
Vol 28 (1) ◽  
pp. 928-939
Author(s):  
Mengping Long ◽  
Wei Hou ◽  
Yiqiang Liu ◽  
Taobo Hu

Regulators of histone acetylation are promising epigenetic targets for therapy in breast cancer. In this study, we comprehensively analyzed the expression of histone acetylation modulator genes in breast cancer using TCGA data sources. A gene signature composed of eight histone acetylation modulators (HAMs) was found to be effective for the classification and prognosis of breast cancers, especially in the HER2-enriched and basal-like molecular subtypes. The eight genes consist of two histone acetylation writers (GTF3C4 and CLOCK), two erasers (HDAC2 and SIRT7) and four readers (BRD4, BRD7, SP100, and BRWD3). Both histone acetylation writer genes and eraser genes were found to be differentially expressed between the two groups indicating a close relationship exists between overall histone acetylation level and prognosis of breast cancer in HER2-enriched and basal-like breast cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongdong Fei ◽  
Yazheng Wang ◽  
Qiming Zhai ◽  
Xige Zhang ◽  
Yang Zhang ◽  
...  

Abstract Background This study aimed to explore the effect of KAT6A on the decreased stemness of aging bone marrow-derived mesenchymal stem cells (BMSCs) and its potential mechanism. Methods The acetylation level and KAT6A expression of BMSCs from the young (YBMSCs) and the old (OBMSCs) were examined. Gain- and loss-of-function experiments were performed to determine the effect of KAT6A on BMSC proliferation, colony formation, and osteogenic differentiation. The effect of KAT6A on Nrf2/ARE signaling pathway was investigated after KAT6A inhibition in YBMSCs or overexpression in OBMSCs, and the role of Nrf2/ARE signaling pathway on stemness was examined by investigating proliferation, colony formation, and osteogenic differentiation. Further in vivo study was performed to explore osteogenesis ability of OBMSCs after modulation of KAT6A and Nrf2/ARE pathway through cell sheet technology. Results The acetylation level and KAT6A expression of OBMSCs were decreased, and KAT6A downregulation resulted in decreased proliferation, colony formation, and osteogenic differentiation of OBMSCs. Mechanically, KAT6A was found to regulate Nrf2/ARE signaling pathway and inhibit ROS accumulation in OBMSCs, thus promoting proliferation, colony formation, and osteogenic differentiation of OBMSCs. Further study demonstrated that KAT6A could promote osteogenesis of OBMSCs by regulating Nrf2/ARE signaling pathway. Conclusions Downregulation of KAT6A resulted in the decreased stemness of OBMSCs by inhibiting the Nrf2/ARE signaling pathway. Graphical abstract KAT6A was downregulated in aging bone marrow-derived mesenchymal stem cells (BMSCs), and downregulation of KAT6A resulted in Nrf2/ARE signaling pathway inhibition and ROS accumulation, thus leading to decreased stemness of aging BMSCs.


Author(s):  
Shuai Huang ◽  
Ye Li ◽  
Guihua Sheng ◽  
Qingwei Meng ◽  
Qian Hu ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Aleksandra Owczarek ◽  
Katarzyna B. Gieczewska ◽  
Marta Polanska ◽  
Bohdan Paterczyk ◽  
Andrzej Gruza ◽  
...  

Although melatonin is widely known for its nephroprotective properties, there are no reports clearly pointing at its impact on the activity of hypoxia-inducible factor-1 (HIF-1), the main mediator of metabolic responses to hypoxia, in kidneys. The aim of the present study was to elucidate how melatonin affects the expression of the regulatory subunit HIF-1α in renal proximal tubules. HK-2 cells, immortalized human proximal tubular cells, were cultured under hypoxic conditions (1% O2). Melatonin was applied at 100 μM concentration. Protein and mRNA contents were determined by Western blot and RT-qPCR, respectively. HIF-1α acetylation level was established by means of immunoprecipitation followed by Western blot. Melatonin receptors MT1 and MT2 localization in HK-2 cells was visualized using immunofluorescence confocal analysis. It was found that melatonin in HK-2 cells (1) lowered HIF-1α protein, but not mRNA, content; (2) attenuated expression of HIF-1 target genes; (3) increased HIF-1α acetylation level; and (4) diminished sirtuin 1 expression (both protein and mRNA). Sirtuin 1 involvement in the regulation of HIF-1α level was confirmed applying cells with silenced Sirt1 gene. Moreover, the presence of membrane MT1 and MT2 receptors was identified in HK-2 cells and their ligand, ramelteon, turned out to mimic melatonin action on both HIF-1α and sirtuin 1 levels. Thus, it is concluded that the mechanism of melatonin-evoked decline in HIF-1α content in renal proximal tubular cells involves increased acetylation of this subunit which results from the attenuated expression of sirtuin 1, an enzyme reported to deacetylate HIF-1α. This observation provides a new insight to the understanding of melatonin action in kidneys.


2020 ◽  
Author(s):  
Li-Li Yang ◽  
Hui Hong ◽  
Xiang Gao ◽  
Jemaa Essemine ◽  
Xin Fang ◽  
...  

AbstractThe post-translational modifications of non-histone (PTMs) proteins functions are crucial for the plant adaption to the changing environment. The Rubisco activase (RCA) plays a key role in the CO2 fixation through the Rubisco activation process. We reported that the RCA from tobacco leaf could be acetylated at several lysine residues including K126 and K164. The acetylation level changes under different light conditions (night and day) as well as under heat stress (45 °C). We further showed that the RCA can be non-enzymatically acetylated in vitro, especially by the acetyl-CoA (Ac-CoA) through direct interaction between them. Our results of the in vitro assay with deuterium labeled Ac-CoA (D2-Ac-CoA) show that the two conserved RCA lysine residues (K126 and K164) were acetylated by Ac-CoA, entraining a dramatic decline in its ATPase activity and a slight effect on the Rubisco activation process. Furthermore, we revealed that the higher RCA acetylation level induced its faster degradation in the chloroplast, which was not a direct consequence of ubiquitination. Eventually, our findings unraveled a new prominent role for the protein acetylation in modulating the RCA stability, which could certainly regulate the carbon assimilation efficiency towards a different energy status of the plants.


Sign in / Sign up

Export Citation Format

Share Document