Evaluation of the integrated multi-satellite retrievals for global precipitation measurement over the Tibetan Plateau

2019 ◽  
Vol 16 (7) ◽  
pp. 1500-1514 ◽  
Author(s):  
Lu Ma ◽  
Lin Zhao ◽  
Li-ming Tian ◽  
Li-ming Yuan ◽  
Yao Xiao ◽  
...  
Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 9 ◽  
Author(s):  
Guolu Gao ◽  
Quanliang Chen ◽  
Hongke Cai ◽  
Yang Li ◽  
Zhenglin Wang

Observational data from the Global Precipitation Measurement (GPM) Core Observatory during four summers (2014–2017) has been used to investigate deep convection systems (DCSs) over the Tibetan Plateau (TP) and its south slope (SS). The frequency, geographical distribution diurnal variation, and vertical structure of DCSs over the TP and SS are compared among these two regions. The frequency of DCSs over the SS (0.98%) was far higher than over the TP (0.15%), suggesting that stronger DCSs occur to the east and south of the TP. The maximum number of DCS occurred in July and August. A clear diurnal variation in DCS was found over the whole region, DCSs over the TP and SS both have a greatest amplitude in the afternoon. The probability of DCSs from 1200 to 1800 local time (LT) was 76.3% and 44.1% over TP and SS respectively, whereas the probability of DCSs being generated from 2200 (LT) to 0600 on the next day LT was 0.03% and 33.1% over the TP and SS respectively. There was a very low frequency of DCSs over the TP during the night. Five special echo top heights were used to investigate the vertical structure of DCSs. DCSs over the TP were both weaker and smaller than those over the SS.


2020 ◽  
Vol 12 (13) ◽  
pp. 2114
Author(s):  
Christine Kolbe ◽  
Boris Thies ◽  
Nazli Turini ◽  
Zhiyu Liu ◽  
Jörg Bendix

We present the new Precipitation REtrieval covering the TIbetan Plateau (PRETIP) as a feasibility study using the two geostationary (GEO) satellites Elektro-L2 and Insat-3D with reference to the GPM (Global Precipitation Measurement Mission) IMERG (Integrated Multi-satellitE Retrievals for GPM) product. The present study deals with the assignment of the rainfall rate. For precipitation rate assignment, the best-quality precipitation estimates from the gauge calibrated microwave (MW) within the IMERG product were combined with the GEO data by Random Forest (RF) regression. PRETIP was validated with independent MW precipitation information not considered for model training and revealed a good performance on 30 min and 11 km spatio-temporal resolution with a correlation coefficient of R = 0.59 and outperforms the validation of the independent MW precipitation with IMERG’s IR only product (R = 0.18). A comparison of PRETIP precipitation rates in 4 km resolution with daily rain gauge measurements from the Chinese Ministry of Water Resources revealed a correlation of R = 0.49. No differences in the performance of PRETIP for various elevation ranges or between the rainy (July, August) and the dry (May, September) season could be found.


2018 ◽  
Vol 10 (12) ◽  
pp. 2022 ◽  
Author(s):  
Dekai Lu ◽  
Bin Yong

Satellite precipitation products provide alternative precipitation data in mountain areas. This study aimed to assess the performance of the latest Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) version 5 (IMERG V5) and Global Satellite Mapping of Precipitation version 7 (GSMaP V7) products and their hydrological utilities over the Tibetan Plateau (TP). Here, two IMERG Final Run products (uncalibrated IMERG (IMERG-UC) and gauge-calibrated IMERG (IMEEG-C)) and two GSMaP products (GSMaP Moving Vector with Kalman Filter (GSMaP-MVK) and gauge-adjusted GSMaP (GSMaP-Gauge)) were evaluated from April 2014 to March 2017. Results show that all four satellite precipitation products could generally capture the spatial patterns of precipitation over the TP. The two gauge-adjusted products were more consistent with the ground measurements than the satellite-only products in terms of statistical assessment. For hydrological simulation, IMERG-UC and GSMaP-MVK showed unsatisfactory performance for hydrological utility, while GSMaP-Gauge demonstrated comparable performance with gauge reference data, suggesting that GSMaP-Gauge can be selected for hydrological application in the TP. Our study also indicates that accurately measuring light rainfall and winter snow is still a challenging task for the current satellite precipitation retrievals.


2020 ◽  
Author(s):  
Christine Kolbe ◽  
Boris Thies ◽  
Nazli Turini ◽  
Jörg Bendix

<p>The distribution of precipitation on the Tibetan Plateau (TiP) is not yet understood due to various factors. Satellite-based precipitation retrieval can provide comprehensive information in a high spatial-temporal resolution. The aim of this feasibility study is to retrieve precipitation rates over High Asia using multi-spectral data from the two geostationary (GEO) satellites Elektro-L2 and Insat-3D in a 30 minutes and 4 km resolution. The variety of spectral bands from both satellites provides an insight into the cloud properties which are associated with precipitation. In the first step, the precipitation area is delineated, and in a second step, the rates are retrieved. To this end, we use a machine learning approach (Random Forest, RF) and a precipitation product of the Global Precipitation Measurement Mission (GPM IMERG) as a reference. From this product, we use the best quality gauge calibrated microwave (MW) precipitation estimates. We validate our results with independent gauge calibrated MW precipitation. To improve the RF models, we tested various optimization schemes. The results of this study will provide information about the precipitation processes in High Asia.</p>


Author(s):  
David Hudak ◽  
Éva Mekis ◽  
Peter Rodriguez ◽  
Bo Zhao ◽  
Zen Mariani ◽  
...  

Abstract To assess the performance of the most recent versions of the Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), namely V05 and V06, in Arctic regions, comparisons with Environment and Climate Change Canada (ECCC) Climate Network stations north of 60°N were performed. This study focuses on the IMERG monthly final products. The mean bias and mean error-weighted bias were assessed in comparison with twenty-five precipitation gauge measurements at ECCC Climate Network stations. The results of this study indicate that IMERG generally detects higher precipitation rates in the Canadian Arctic than ground-based gauge instruments, with differences ranging up to 0.05 mm h−1 and 0.04 mm h−1 for the mean bias and the mean error-weighted bias, respectively. Both IMERG versions perform similarly, except for a few stations, where V06 tends agree slightly better with ground-based measurements. IMERG’s tendency to detect more precipitation is in good agreement with findings indicating that weighing gauge measurement suffer from wind undercatch and other impairing factors, leading to lower precipitation estimates. Biases between IMERG and ground-based stations were found to be slightly larger during summer and fall, which is likely related to the increased precipitation rates during these seasons. Correlations of both versions of IMERG with the ground-based measurements are considerably lower in winter and spring than during summer and fall, which might be linked to issues that Passive Microwave (PMW) sensors encounter over ice and snow. However, high correlation coefficients with medians of 0.75-0.8 during summer and fall are very encouraging for potential future applications.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1139 ◽  
Author(s):  
Min Yang ◽  
Zhongqin Li ◽  
Muhammad Naveed Anjum ◽  
Yayu Gao

This study evaluated the performance of the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) version 5 (V05) Early-run and Final-run (IMERG-E and IMERG-F, respectively) products over the Tianshan Mountains. For comparison, the accuracies of two Tropical Rainfall Measuring Mission (TRMM) products (3B42RT and 3B42V7) were also analyzed. Performance of the satellite-based precipitation products (SPPs) was analyzed at daily to annual scales from April 2014 to October 2017. Results showed that: (1) IMERG-F and 3B42V7 performed better than IMERG-E and 3B42RT in the characterization of spatiotemporal variability of precipitation; (2) Precipitation estimates from IMERG-F were in the best overall agreement with the gauge-based data, followed by IMERG-E and 3B42V7 on all temporal scales; (3) IMERG-E and 3B42RT products were failed to provide accurate precipitation amounts, whereas IMERG-F and 3B42V7 were able to provide accurate precipitation estimates with the lowest relative biases (4.98% and −1.71%, respectively) and RMSE (0.58 mm/day and 0.76 mm/day, respectively); (4) The enhancement from the IMERG Early-run to the Final-run to capture the moderate to heavy precipitation events was not evident; (5) On seasonal scale, IMEGR-F performed better than all other SPPs, particularly during the spring season with negligible bias (0.28%). It was deduced that IMERG-F was capable of replacing TRMM products.


2020 ◽  
Vol 12 (19) ◽  
pp. 3212
Author(s):  
Adrianos Retalis ◽  
Dimitris Katsanos ◽  
Filippos Tymvios ◽  
Silas Michaelides

Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) high-resolution product and Tropical Rainfall Measuring Mission (TRMM) 3B43 product are validated against rain gauges over the island of Cyprus for the period from April 2014 to June 2018. The comparison performed is twofold: firstly, the Satellite Precipitation (SP) estimates are compared with the gauge stations’ records on a monthly basis and, secondly, on an annual basis. The validation is based on ground data from a dense and well-maintained network of rain gauges, available in high temporal (hourly) resolution. The results show high correlation coefficient values, on average reaching 0.92 and 0.91 for monthly 3B43 and IMERG estimates, respectively, although both IMERG and TRMM tend to underestimate precipitation (Bias values of −1.6 and −3.0, respectively), especially during the rainy season. On an annual basis, both SP estimates are underestimating precipitation, although IMERG estimates records (R = 0.82) are slightly closer to that of the corresponding gauge station records than those of 3B43 (R = 0.81). Finally, the influence of elevation of both SP estimates was considered by grouping rain gauge stations in three categories, with respect to their elevation. Results indicated that both SP estimates underestimate precipitation with increasing elevation and overestimate it at lower elevations.


Sign in / Sign up

Export Citation Format

Share Document