Evolution of temperature indices in the periglacial environment of the European Alps in the period 1990–2019

2021 ◽  
Vol 18 (11) ◽  
pp. 2842-2853
Author(s):  
Guido Nigrelli ◽  
Marta Chiarle
2014 ◽  
Vol 60 (2) ◽  
pp. 119-132 ◽  
Author(s):  
C Hartl-Meier ◽  
C Zang ◽  
C Dittmar ◽  
J Esper ◽  
A Göttlein ◽  
...  

Erdkunde ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 345-354
Author(s):  
Sebastian Schmidtlein ◽  
Ulrike Faude ◽  
Ole Rössler ◽  
Hannes Feilhauer ◽  
Jörg Ewald ◽  
...  

Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Xiaoying Xue ◽  
Guoyu Ren ◽  
Xiubao Sun ◽  
Panfeng Zhang ◽  
Yuyu Ren ◽  
...  

AbstractThe understanding of centennial trends of extreme temperature has been impeded due to the lack of early-year observations. In this paper, we collect and digitize the daily temperature data set of Northeast China Yingkou meteorological station since 1904. After quality control and homogenization, we analyze the changes of mean and extreme temperature in the past 114 years. The results show that mean temperature (Tmean), maximum temperature (Tmax), and minimum temperature (Tmin) all have increasing trends during 1904–2017. The increase of Tmin is the most obvious with the rate of 0.34 °C/decade. The most significant warming occurs in spring and winter with the rate of Tmean reaching 0.32 °C/decade and 0.31 °C/decade, respectively. Most of the extreme temperature indices as defined using absolute and relative thresholds of Tmax and Tmin also show significant changes, with cold events witnessing a more significant downward trend. The change is similar to that reported for global land and China for the past six decades. It is also found that the extreme highest temperature (1958) and lowest temperature (1920) records all occurred in the first half of the whole period, and the change of extreme temperature indices before 1950 is different from that of the recent decades, in particular for diurnal temperature range (DTR), which shows an opposite trend in the two time periods.


Boreas ◽  
2021 ◽  
Author(s):  
Marie Protin ◽  
Irene Schimmelpfennig ◽  
Jean‐Louis Mugnier ◽  
Jean‐François Buoncristiani ◽  
Melaine Le Roy ◽  
...  

Author(s):  
John A. Manalo ◽  
Jun Matsumoto ◽  
Hiroshi G. Takahashi ◽  
Marcelino Q. Villafuerte ◽  
Lyndon Mark P. Olaguera ◽  
...  

2007 ◽  
Vol 28 (21) ◽  
pp. 4841-4865 ◽  
Author(s):  
N. Foppa ◽  
A. Hauser ◽  
D. Oesch ◽  
S. Wunderle ◽  
R. Meister
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document