scholarly journals Millennial‐scale deglaciation across the European Alps at the transition between the Younger Dryas and the Early Holocene – evidence from a new cosmogenic nuclide chronology

Boreas ◽  
2021 ◽  
Author(s):  
Marie Protin ◽  
Irene Schimmelpfennig ◽  
Jean‐Louis Mugnier ◽  
Jean‐François Buoncristiani ◽  
Melaine Le Roy ◽  
...  
Author(s):  
Áslaug Geirsdóttir ◽  
Gifford H. Miller ◽  
David J. Harning ◽  
Hrafnhildur Hannesdóttir ◽  
Thor Thordarson ◽  
...  

2019 ◽  
Vol 56 (1) ◽  
pp. 30-46 ◽  
Author(s):  
Ashley M. Abrook ◽  
Ian P. Matthews ◽  
Alice M. Milner ◽  
Ian Candy ◽  
Adrian P. Palmer ◽  
...  

The Last Glacial–Interglacial Transition (LGIT) is a period of climatic complexity where millennial-scale climatic reorganization led to changes in ecosystems. Alongside millennial-scale changes, centennial-scale climatic events have been observed within records from Greenland and continental Europe. The effects of these abrupt events on landscapes and environments are difficult to discern at present. This, in part, relates to low temporal resolutions attained by many studies and the sensitivity of palaeoenvironmental proxies to abrupt change. We present a high-resolution palynological and charcoal study of Quoyloo Meadow, Orkney and use the Principal Curve statistical method to assist in revealing biostratigraphic change. The LGIT vegetation succession on Orkney is presented as open grassland and Empetrum heath during the Windermere Interstadial and early Holocene, and open grassland with Artemisia during the Loch Lomond Stadial. However, a further three phases of ecological change, characterized by expansions of open ground flora, are dated to 14.05–13.63, 10.94–10.8 and 10.2 cal ka BP. The timing of these changes is constrained by cryptotephra of known age. The paper concludes by comparing Quoyloo Meadow with Crudale Meadow, Orkney, and suggests that both Windermere Interstadial records are incomplete and that fire is an important landscape control during the early Holocene.Supplementary material: All raw data associated with this publication: raw pollen counts, charcoal data, Principal Curve and Rate of Change outputs and the age-model output are available at https://doi.org/10.6084/m9.figshare.c.4725269Thematic collection: This article is part of the ‘Early Career Research’ available at: https://www.lyellcollection.org/cc/SJG-early-career-research


2019 ◽  
Vol 15 (2) ◽  
pp. 713-733 ◽  
Author(s):  
Johannes Hepp ◽  
Lorenz Wüthrich ◽  
Tobias Bromm ◽  
Marcel Bliedtner ◽  
Imke Kathrin Schäfer ◽  
...  

Abstract. Causes of the Late Glacial to Early Holocene transition phase and particularly the Younger Dryas period, i.e. the major last cold spell in central Europe during the Late Glacial, are considered to be keys for understanding rapid natural climate change in the past. The sediments from maar lakes in the Eifel, Germany, have turned out to be valuable archives for recording such paleoenvironmental changes. For this study, we investigated a Late Glacial to Early Holocene sediment core that was retrieved from the Gemündener Maar in the Western Eifel, Germany. We analysed the hydrogen (δ2H) and oxygen (δ18O) stable isotope composition of leaf-wax-derived lipid biomarkers (n-alkanes C27 and C29) and a hemicellulose-derived sugar biomarker (arabinose), respectively. Both δ2Hn-alkane and δ18Osugar are suggested to reflect mainly leaf water of vegetation growing in the catchment of the Gemündener Maar. Leaf water reflects δ2H and δ18O of precipitation (primarily temperature-dependent) modified by evapotranspirative enrichment of leaf water due to transpiration. Based on the notion that the evapotranspirative enrichment depends primarily on relative humidity (RH), we apply a previously introduced “coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach” to reconstruct the deuterium excess of leaf water and in turn Late Glacial–Early Holocene RH changes from our Gemündener Maar record. Our results do not provide evidence for overall markedly dry climatic conditions having prevailed during the Younger Dryas. Rather, a two-phasing of the Younger Dryas is supported, with moderate wet conditions at the Allerød level during the first half and drier conditions during the second half of the Younger Dryas. Moreover, our results suggest that the amplitude of RH changes during the Early Holocene was more pronounced than during the Younger Dryas. This included the occurrence of a “Preboreal Humid Phase”. One possible explanation for this unexpected finding could be that solar activity is a hitherto underestimated driver of central European RH changes in the past.


2019 ◽  
Author(s):  
Lujendra Ojha ◽  
Ken L. Ferrier ◽  
Tank Ojha

Abstract. Over the past two decades, rates and patterns of Himalayan denudation have been documented through numerous cosmogenic nuclide measurements in central and eastern Nepal, Bhutan, and northern India. To date, however, few denudation rates have been measured in Far Western Nepal – a ~ 300-km-wide region near the center of the Himalayan arc – which presents a significant gap in our understanding of Himalayan denudation. Here we report new catchment-averaged millennial-scale denudation rates inferred from cosmogenic 10Be in fluvial quartz at seven sites in Far Western Nepal. The inferred denudation rates range from 385 ± 31 t km−2 yr−1 (0.15 ± 0.01 mm yr −1) to 8737 ± 2908 t km−2 yr−1 (3.3 ± 1.1 mm yr−1), and, in combination with our analyses of channel topography, are broadly consistent with previously published relationships between catchment-averaged denudation rates and normalized channel steepness across the Himalaya. These data show a weak correlation with catchment-averaged specific stream power, consistent with a Himalaya-wide compilation of previously published stream power values. Together, these observations are consistent with a dependence of denudation rate on both tectonic and climatic forcings, and represent a first step toward filling an important gap in denudation rate measurements in Far Western Nepal.


Radiocarbon ◽  
1998 ◽  
Vol 40 (3) ◽  
pp. 1107-1116 ◽  
Author(s):  
Marco Spurk ◽  
Michael Friedrich ◽  
Jutta Hofmann ◽  
Sabine Remmele ◽  
Burkhard Frenzel ◽  
...  

Oak and pine samples housed at the Institute of Botany, University of Hohenheim, are the backbone of the early Holocene part of the radiocarbon calibration curve, published in 1993 (Becker 1993; Kromer and Becker 1993; Stuiver and Becker 1993; Vogel et al. 1993). Since then the chronologies have been revised. The revisions include 1) the discovery of 41 missing years in the oak chronology and 2) a shift of 54 yr for the oldest part back into the past. The oak chronology was also extended with new samples as far back as 10,429 BP (8480 BC). In addition, the formerly tentatively dated pine chronology (Becker 1993) has been rebuilt and shifted to an earlier date. It is now positioned by 14C matching at 11,871-9900 BP (9922–7951 BC) with an uncertainty of ±20 yr (Kromer and Spurk 1998). With these new chronologies the 14C calibration curve can now be corrected, eliminating the discrepancy in the dating of the Younger Dryas/Preboreal transition between the proxy data of the GRIP and GISP ice cores (Johnsen et al. 1992; Taylor et al. 1993), the varve chronology of Lake Gościąż (Goslar et al. 1995) and the pine chronology (Becker, Kromer and Trimborn 1991).


2019 ◽  
Vol 56 (8) ◽  
pp. 848-856
Author(s):  
Cyril Aubert ◽  
Morteza Djamali ◽  
Matthew Jones ◽  
Hamid Lahijani ◽  
Nick Marriner ◽  
...  

The late glacial – early Holocene transition is a key period in the earth’s history. However, although this transition is well studied in Europe, it is not well constrained in the Middle East and palaeohydrological records with robust chronologies remain scarce from this region. Here we present an interesting hydrobiological record showing a major environmental change occurring in the Dasht-e Arjan Wetland (southwestern Iran, near to Persepolis) during the late glacial – early Holocene transition (ca. 11 650 years cal BP). We use subfossil chironomids (Insecta: Diptera) as a proxy for hydrological changes and to reconstruct lake-level fluctuations. The Arjan wetland was a deep lake during the Younger Dryas marked by a dominance of Chironomus plumosus/anthracinus-type, taxa adapted to anoxic conditions of deep waters. At the beginning of the Holocene, a drastic decrease (more than 80% to less than 10%) of Chironomus plumosus/anthracinus-type, combined with diversification of littoral taxa such as Polypedilum nubeculosum-type, Dicrotendipes nervosus-type, and Glyptotendipes pallens-type, suggests a lake-level decrease and a more vegetalized aquatic environment. We compare and contrast the chironomid record of Arjan with a similar record from northwestern Iran. The palaeoclimatic significance of the record, at a local and regional scale, is subsequently discussed. The increase in Northern Hemisphere temperatures, inferred by geochemical data from NGRIP, at the beginning of the Holocene best explains the change from the Younger Dryas highstand to early Holocene lowstand conditions in the Dasht-e Arjan wetland. However, a contribution of the meltwater inflow from small local glaciers in the catchment basin is not excluded.


2004 ◽  
Vol 56 (2-3) ◽  
pp. 155-169 ◽  
Author(s):  
Gerald A. Oetelaar

Abstract Researchers working in the Bow River valley have identified a minimum of four alluvial terraces, the upper two of which have been designated as paired terraces. Over the past 35 years, they have attempted to correlate these alluvial landforms and to generate models for the development of the terraces along the section of the Bow River between Calgary and the Rocky Mountains. In this study, Mazama ash and an early Holocene paleosol are used to correlate the terrace suites examined by previous researchers and to generate a model which accounts for the development of the upper two sets of paired terraces. These paired terraces reflect major episodes of aggradation and degradation that result from changes in independent variables such as climate and uplift. The initial episode of aggradation, dating from the late Pleistocene, is the result of paraglacial processes in a sparsely vegetated, yet saturated environment. Following a brief episode of degradation at the end of the Younger Dryas, the second episode of aggradation, dating from 9000 to 5000 BP, is caused by increased sediment load and lowered stream power during the Hypsithermal.


2015 ◽  
Vol 438 ◽  
pp. 34-50 ◽  
Author(s):  
Dominik Pawłowski ◽  
Mateusz Płóciennik ◽  
Stephen J. Brooks ◽  
Tomi P. Luoto ◽  
Krystyna Milecka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document