Wind tunnel study on wind and turbulence intensity profiles in wind turbine wake

2011 ◽  
Vol 20 (2) ◽  
pp. 127-132 ◽  
Author(s):  
Takao Maeda ◽  
Yasunari Kamada ◽  
Junsuke Murata ◽  
Sayaka Yonekura ◽  
Takafumi Ito ◽  
...  
2013 ◽  
Vol 737 ◽  
pp. 499-526 ◽  
Author(s):  
G. V. Iungo ◽  
F. Viola ◽  
S. Camarri ◽  
F. Porté-Agel ◽  
F. Gallaire

AbstractWind tunnel measurements were performed for the wake produced by a three-bladed wind turbine immersed in uniform flow. These tests show the presence of a vorticity structure in the near-wake region mainly oriented along the streamwise direction, which is denoted as the hub vortex. The hub vortex is characterized by oscillations with frequencies lower than that connected to the rotational velocity of the rotor, which previous works have ascribed to wake meandering. This phenomenon consists of transversal oscillations of the wind turbine wake, which might be excited by the vortex shedding from the rotor disc acting as a bluff body. In this work, temporal and spatial linear stability analyses of a wind turbine wake are performed on a base flow obtained with time-averaged wind tunnel velocity measurements. This study shows that the low-frequency spectral component detected experimentally matches the most amplified frequency of the counter-winding single-helix mode downstream of the wind turbine. Then, simultaneous hot-wire measurements confirm the presence of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal to that predicted from the linear stability analysis.


2008 ◽  
Vol 32 (5) ◽  
pp. 459-475 ◽  
Author(s):  
A. Duckworth ◽  
R.J. Barthelmie

This article discusses the application of widely used, state of the art, wake models, focusing on the Ainslie [1], Katic [2] and Larsen [3] models, breaking these down and explaining the individual, integral components. Models used to predict the turbulence intensity within the wake are also explained. Measured data are subsequently used to validate these wake and turbulence models, showing acceptable results for the prediction of velocity deficit within the wake, wake width and wake shape. Results also highlight the validity of the analysed turbulence models. The paper describes the problems encountered when using measured data to validate wake models and concludes by outlining subsequent work which could be carried out to further validate these models.


Wind Energy ◽  
2018 ◽  
Vol 21 (9) ◽  
pp. 715-731 ◽  
Author(s):  
Michael Heisel ◽  
Jiarong Hong ◽  
Michele Guala

2014 ◽  
Vol 31 (10) ◽  
pp. 2035-2048 ◽  
Author(s):  
Giacomo Valerio Iungo ◽  
Fernando Porté-Agel

Abstract Optimization of a wind farm’s layout is a strategic task to reduce wake effects on downstream turbines, thus maximizing wind power harvesting. However, downstream evolution and recovery of each wind turbine wake are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as the vertical profiles of the mean wind velocity and the turbulence intensity, which are in turn affected by the ABL thermal stability. Therefore, the characterization of the variability of wind turbine wakes under different ABL stability regimes becomes fundamental to better predict wind power harvesting and to improve wind farm efficiency. To this aim, wind velocity measurements of the wake produced by a 2-MW Enercon E-70 wind turbine were performed with three scanning Doppler wind lidars. One lidar was devoted to the characterization of the incoming wind—in particular, wind velocity, shear, and turbulence intensity at the height of the rotor disc. The other two lidars performed volumetric scans of the wind turbine wake under different atmospheric conditions. Through the evaluation of the minimum wake velocity deficit as a function of the downstream distance, it is shown that the ABL stability regime has a significant effect on the wake evolution; in particular, the wake recovers faster under convective conditions. This result suggests that atmospheric inflow conditions, and particularly thermal stability, should be considered for improved wake models and predictions of wind power harvesting.


Sign in / Sign up

Export Citation Format

Share Document