Numerical Investigations of the Influence of Unsteady Vane Trailing Edge Shock Wave on Film Cooling Effectiveness of Rotor Blade Leading Edge

2018 ◽  
Vol 27 (2) ◽  
pp. 135-145
Author(s):  
Yufeng Wang ◽  
Le Cai ◽  
Songtao Wang ◽  
Xun Zhou
2006 ◽  
Vol 128 (9) ◽  
pp. 879-888 ◽  
Author(s):  
Jaeyong Ahn ◽  
M. T. Schobeiri ◽  
Je-Chin Han ◽  
Hee-Koo Moon

Detailed film cooling effectiveness distributions are measured on the leading edge of a rotating gas turbine blade with two rows (pressure-side row and suction-side row from the stagnation line) of holes aligned to the radial axis using the pressure sensitive paint (PSP) technique. Film cooling effectiveness distributions are obtained by comparing the difference of the measured oxygen concentration distributions with air and nitrogen as film cooling gas respectively and by applying the mass transfer analogy. Measurements are conducted on the first-stage rotor blade of a three-stage axial turbine at 2400rpm (positive off-design), 2550rpm (design), and 3000rpm (negative off-design), respectively. The effect of three blowing ratios is also studied. The blade Reynolds number based on the axial chord length and the exit velocity is 200,000 and the total to exit pressure ratio was 1.12 for the first-stage rotor blade. The corresponding rotor blade inlet and outlet Mach numbers are 0.1 and 0.3, respectively. The film cooling effectiveness distributions are presented along with discussions on the influence of rotational speed (off design incidence angle), blowing ratio, and upstream nozzle wakes around the leading edge region. Results show that rotation has a significant impact on the leading edge film cooling distributions with the average film cooling effectiveness in the leading edge region decreasing with an increase in the rotational speed (negative incidence angle).


Author(s):  
Ivan G. Rice

The integration of multiple steam nozzles with the first-stage annular-gas nozzle to form a binary-flow system in a reheat-gas turbine is presented whereby steam is first used as an internal vane coolant before being expanded and accelerated for work extraction. Steam nozzles are located in “fat-body” type vanes. Trailing-edge impingement followed by reverse-serpentine-flow cooling takes place. Internal trailing-edge-steam nozzles produce either diffusion or shock-wave boundary-layer disturbance inside the trailing edge to enhance heat transfer. Externally, steam blanketing reduces nozzle-profile loss and improves film cooling effectiveness by reducing the surface viscosity and secondly by controlling suction-side aft-shock-wave development. A new vane shape coupled with a gas-turning-combustor system is suggested to improve vane-film cooling effectiveness further.


2011 ◽  
Vol 134 (4) ◽  
Author(s):  
S. Naik ◽  
C. Georgakis ◽  
T. Hofer ◽  
D. Lengani

This paper investigates the flow, heat transfer, and film cooling effectiveness of advanced high pressure turbine blade tips and endwalls. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with leading edge and trailing edge cutouts. Both blade tip configurations have pressure side film cooling and cooling air extraction through dust holes, which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavy-duty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9×105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aerothermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the midchord region. However, on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall.


Author(s):  
Huazhao Xu ◽  
Jianhua Wang ◽  
Ting Wang

To understand the unsteady shock wave and wake effects on the film cooling performance over a transonic 3-D rotating stage, a series of numerical investigations have been conducted and are presented in this two-part paper. Part 1 is focused on the development of the computational model and methodology of the system setup and model qualification; Part 2 is to investigate the unsteady effects of shock waves and wakes on film cooling performance in a transonic rotating stage. In Part 1, the film cooling experimental conditions (non-rotating) and test sections of Kopper et. al. and Hunter are selected for model qualification. The numerical computation is carried out by the commercial software Ansys/Fluent using the pressure based compressible flow governing equations. The effects of four turbulence models are carefully compared with the experimental data. The Realizable k-ε turbulence model is found to match the experimental data better than the other models and is thus used for the rest of the study, including Part 2. The results show that 1) the weak shock emanating from the neighboring stator’s trailing edge results in a temperature rise and a reduction of film cooling effectiveness on the suction side near the trailing edge, 2) cooling ejection from the trailing edge reduces the shock strength in the stator passage, 3) an increase in Mach number from 0.84 to 1.50 can reduce the total pressure losses of fluid flow near the end-walls, 4) the film cooling effectiveness increases with increasing blowing ratio and becomes more even on the stator with a higher blowing ratio, and 5) an increase in Mach number from 0.84 to 1.50 gives rise to a higher cooling effectiveness in the region from the cooling holes to 80% of the chord length of the stator on the pressure side, but becomes lower after this up to the trailing edge. However, on the stator’s suction side, higher Mach number results in a lower cooling effectiveness region around the film holes from 30% to 55% of the chord length, but cooling effectiveness increases downstream.


Author(s):  
S. Naik ◽  
C. Georgakis ◽  
T. Hofer ◽  
D. Lengani

This paper investigates the flow, heat transfer and film cooling effectiveness of advanced high-pressure turbine blade tips and endwall. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with a leading edge and trailing edge cut-out. Both blade tip configurations have pressure side film cooling, and cooling air extraction through dust holes which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavy-duty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9 × 105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aero-thermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although, the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the mid-chord region. However on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall.


Author(s):  
Ivan G. Rice

The integration of multiple steam nozzles with the first-stage annular-gas nozzle to form a binary-flow system in a reheat-gas turbine is presented whereby steam is first used as an internal vane coolant before being expanded and accelerated for work extraction. Steam nozzles are located in “fat-body” type vanes. Trailing-edge impingement followed by reverse-serpentine-flow cooling takes place. Internal trailing-edge-steam nozzles produce either diffusion or shock-wave boundary-layer disturbance inside the trailing edge to enhance heat transfer. Externally, steam blanketing reduces nozzle-profile loss and improves film cooling effectiveness by reducing the surface viscosity and secondly by controlling suction-side aft-shock-wave development. A new vane shape coupled with a gas-turning-combustor system is suggested to improve vane-film-cooling effectiveness further.


Author(s):  
Murari Sridhar ◽  
B. V. S. S. S. Prasad ◽  
N. Sitaram

The effect of inlet wake and air injection on blade surface temperature distribution is experimentally determined in the present paper. A flat plate with smoothly curved leading edge and a symmetric beveled trailing edge is used to produce inlet wake. Experiments are performed on a seven-airfoil linear cascade in a low speed wind tunnel at the chord Reynolds number of 5.3×105. Three blades in the middle of the cascade are provided with multiple rows of air injection holes on both pressure surface and suction surface. The distance between the trailing edge of the wake plate and leading edge of the cascade blade is kept at three axial locations, i.e. 0.25, 0.35 and 0.5 (all measured in terms of percent blade chord), at seven transverse locations for each axial location. The detailed temperature distributions on the blade surface are measured using “T-Type” thermocouples connected to a data logger. The results are obtained in terms of film cooling effectiveness for a density ratio (between the hot fluid through air injection holes and cold main flow fluid) of 1.1 and injection mass flow rates of 1.1, 2.5, 3.0 and 5.0 percent of main flow. A significant change in the film cooling effectiveness is observed with increase in the injection mass flow rate and change in the axial spacing.


2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Sign in / Sign up

Export Citation Format

Share Document