Experiment Study of Simulated Effect of Rotor Stator Interaction: Effect of Axial Spacing and Rotor Blade Film Cooling Air Injection Ratio

Author(s):  
Murari Sridhar ◽  
B. V. S. S. S. Prasad ◽  
N. Sitaram

The effect of inlet wake and air injection on blade surface temperature distribution is experimentally determined in the present paper. A flat plate with smoothly curved leading edge and a symmetric beveled trailing edge is used to produce inlet wake. Experiments are performed on a seven-airfoil linear cascade in a low speed wind tunnel at the chord Reynolds number of 5.3×105. Three blades in the middle of the cascade are provided with multiple rows of air injection holes on both pressure surface and suction surface. The distance between the trailing edge of the wake plate and leading edge of the cascade blade is kept at three axial locations, i.e. 0.25, 0.35 and 0.5 (all measured in terms of percent blade chord), at seven transverse locations for each axial location. The detailed temperature distributions on the blade surface are measured using “T-Type” thermocouples connected to a data logger. The results are obtained in terms of film cooling effectiveness for a density ratio (between the hot fluid through air injection holes and cold main flow fluid) of 1.1 and injection mass flow rates of 1.1, 2.5, 3.0 and 5.0 percent of main flow. A significant change in the film cooling effectiveness is observed with increase in the injection mass flow rate and change in the axial spacing.

Author(s):  
M. Salcudean ◽  
I. Gartshore ◽  
K. Zhang ◽  
Y. Barnea

Experiments have been conducted on a large model of a turbine blade. Attention has been focussed on the leading edge region, which has a semi-circular shape and four rows of film cooling holes positioned symmetrically about the stagnation line. The cooling holes were oriented in a spanwise direction with an inclination of 30° to the surface, and had streamwise locations of ±15° and ±44° from the stagnation line. Film cooling effectiveness was measured using a heat/mass analogy. Single row cooling from the holes at 15° and 44° showed similar patterns: spanwise averaged effectiveness which rises from zero at zero coolant mass flow to a maximum value η* at some value of mass flow ratio M*, then drops to low values of η at higher M. The trends can be quantitatively explained from simple momentum considerations for either air or CO2 as the coolant gas. Close to the holes, air provides higher η values for small M. At higher M, particularly farther downstream, the CO2 may be superior. The use of an appropriately defined momentum ratio G collapses the data from both holes using either CO2 or air as coolant onto a single curve. For η*, the value of G for all data is about 0.1. Double row cooling with air as coolant shows that the relative stagger of the two rows is an important parameter. Holes in line with each other in successive rows can provide improvements in spanwise averaged film cooling effectiveness of as much as 100% over the common staggered arrangement. This improvement is due to the interaction between coolant from rows one and two, which tends to provide complete coverage of the downstream surface when the rows are placed correctly with respect to each other.


Author(s):  
Zachary T. Stratton ◽  
Tom I-P. Shih

Large eddy simulations (LES) were performed to investigate film cooling of a flat plate, where the cooling jets issued from a plenum through one row of circular holes of diameter D and length 4.7D that are inclined at 35° relative to the plate. The focus is on understanding the turbulent structure of the film-cooling jet and the film-cooling effectiveness. Parameters studied include blowing ratio (BR = 0.5 and 1.0) and density ratio (DR = 1.1 and 1.6). Also, two different boundary layers (BL) upstream of the film-cooling hole were investigated — one in which a laminar BL was tripped to become turbulent from near the leading edge of the flat plate, and another in which a mean turbulent BL is prescribed directly. The wall-resolved LES solutions generated were validated by comparing its time-averaged values with data from PIV and thermal measurements. Results obtained show that having an upstream BL that does not have turbulent fluctuations enhances the cooling effectiveness significantly at low velocity ratios (VR) when compared to an upstream BL that resolved the turbulent fluctuations. However, these differences diminish at higher VRs. Instantaneous flow reveals a bifurcation in the jet vorticity as it exits the hole at low VRs, one branch forming the shear-layer vortex, while the other forms the counter-rotating vortex pair. At higher VRs, the shear layer vorticity is found to reverse direction, changing the nature of the turbulence and the heat transfer. Results obtained also show the strength and structure of the turbulence in the film-cooling jet to be strongly correlated to VR.


Author(s):  
K.-S. Kim ◽  
Youn J. Kim ◽  
S.-M. Kim

To enhance the film cooling performance in the vicinity of the turbine blade leading edge, the flow characteristics of the film-cooled turbine blade have been investigated using a cylindrical body model. The inclination of the cooling holes is along the radius of the cylindrical wall and 20 deg relative to the spanwise direction. Mainstream Reynolds number based on the cylinder diameter was 1.01×105 and 0.69×105, and the mainstream turbulence intensities were about 0.2% in both Reynolds numbers. CO2 was used as coolant to simulate the effect of density ratio of coolant-to-mainstream. Furthermore, the effect of coolant flow rates was studied for various blowing ratios of 0.4, 0.7, 1.1, and 1.4, respectively. In experiment, spatially-resolved temperature distributions along the cylindrical body surface were visualized using infrared thermography (IRT) in conjunction with thermocouples, digital image processing, and in situ calibration procedures. This comparison shows the results generated to be reasonable and physically meaningful. The film cooling effectiveness of current measurement (0.29 mm × 0.33 min per pixel) presents high spatial and temperature resolutions compared to other studies. Results show that the blowing ratio has a strong effect on film cooling effectiveness and the coolant trajectory is sensitive to the blowing ratio. The local spanwise-averaged effectiveness can be improved by locating the first-row holes near the second-row holes.


Author(s):  
Akhilesh P. Rallabandi ◽  
Shiou-Jiuan Li ◽  
Je-Chin Han

The effect of an unsteady stator wake (simulated by wake rods mounted on a spoke wheel wake generator) on the modeled rotor blade is studied using the Pressure Sensitive Paint (PSP) mass transfer analogy method. Emphasis of the current study is on the mid-span region of the blade. The flow is in the low Mach number (incompressible) regime. The suction (convex) side has simple angled cylindrical film-cooling holes; the pressure (concave) side has compound angled cylindrical film cooling holes. The blade also has radial shower-head leading edge film cooling holes. Strouhal numbers studied range from 0 to 0.36; the exit Reynolds Number based on the axial chord is 530,000. Blowing ratios range from 0.5 to 2.0 on the suction side; 0.5 to 4.0 on the pressure side. Density ratios studied range from 1.0 to 2.5, to simulate actual engine conditions. The convex suction surface experiences film-cooling jet lift-off at higher blowing ratios, resulting in low effectiveness values. The film coolant is found to reattach downstream on the concave pressure surface, increasing effectiveness at higher blowing ratios. Results show deterioration in film cooling effectiveness due to increased local turbulence caused by the unsteady wake, especially on the suction side. Results also show a monotonic increase in film-cooling effectiveness on increasing the coolant to mainstream density ratio.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Film cooling experiments were run at the high speed cascade wind tunnel of the University of the Federal Armed Forces Munich. The investigations were carried out with a linear cascade of highly loaded turbine blades. The main objectives of the tests were to assess the film cooling effectiveness and the heat transfer in zones with main flow separation. Therefore, the blades were designed to force the flow to detach on the pressure side shortly downstream of the leading edge and reattach at about half of the axial chord. In this zone, film cooling rows are placed among others for a reduction of the size of the separation bubble. The analyzed region on the blade is critical due to the high heat transfer present at the leading edge and at the reattachment line after the main flow separation. Film cooling can contribute to a reduction of the size of the separation bubble reducing aerodynamic losses, however, in general, it increases heat transfer due to turbulent mixing. The reduction of the size of the separation bubble might also be twofold, since it acts like a thermal insulator on the blade and reducing the size of the bubble might lead to a stronger heating of the blade. Film cooling should, therefore, take both into account: first, a proper protection of the surface and second, reducing aerodynamic losses, diminishing the extension of the main flow separation. While experimental results of the adiabatic film cooling effectiveness were shown in previous publications, the local heat transfer is analyzed in this paper. Emphasis is also placed upon analyzing, in detail, the flow separation process. Furthermore, the tests comprise the analysis of the effect of different outlet Mach and Reynolds numbers and film cooling. In part two of this paper, the overall film cooling effectiveness is addressed. Local heat transfer is still difficult to predict with modern numerical tools and this is especially true for complex flows with flow separation. Some numerical results with the Reynolds averaged Navier-Stokes (RANS) and large eddy simulation (LES) show the capability of a commercial solver in predicting the heat transfer.


Author(s):  
Habeeb Idowu Oguntade ◽  
Gordon E. Andrews ◽  
Alan Burns ◽  
Derek B. Ingham ◽  
Mohammed Pourkashanian

This paper presents the influence of the shaped trailing edge of trench outlets on film cooling effectiveness and aerodynamics. A 90° outlet wall to a trench will give a vertical slot jet into the cross flow and it was considered that improvements in the cooling effectiveness would occur if the trailing edge of the trench outlet was bevelled or filleted. CFD approach was used for these investigations which started with the predictions of the conventional sharp edged trench outlet for two experimental geometries. The computational predictions for the conventional sharp edged trench outlet were shown to have good agreement with the experimental data for two experimental geometries. The shaped trailing edge of the trench outlet was predicted to improve the film cooling effectiveness. The bevelled and filleted trench outlets were predicted to further suppress vertical jet momentum and give a Coanda effect that allowed the cooling air to attach to the downstream wall surface with a better transverse spread of the coolant film. The new trench outlet geometries would allow a reduction in film cooling mass flow rate for the same cooling effectiveness. Also, it was predicted that reducing the coolant mass flow per hole and increasing the number of holes gave, for the same total coolant mass flow, a much superior surface averaged cooling effectiveness for the same cooled surface area.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Film cooling experiments were run at the high speed cascade wind tunnel of the University of the Federal Armed Forces Munich. The investigations were carried out with a linear cascade of highly loaded turbine blades. The main targets of the tests were to assess the film cooling effectiveness and the heat transfer in zones with main flow separation. Therefore the blades were designed to force the flow to detach on the pressure side shortly downstream of the leading edge and it reattaches at about half of the axial chord. In this zone, film cooling rows are placed among others for reduction of the size of the separation bubble. The analyzed region on the blade is critical due to the high heat transfer present at the leading edge and at the reattachment line after main flow separation. Film cooling can contribute to a reduction of the size of the separation bubble reducing aerodynamic losses but increases in general heat transfer due to turbulent mixing. The reduction of the size of the separation bubble might also be two-fold since it acts like a thermal insulator on the blade and reducing the size of the bubble might lead to stronger heating of the blade. Film cooling should therefore take into account both: firstly, a proper protection of the surface, and secondly, reduce aerodynamic losses diminishing the extension of the main flow separation. The overall effectiveness of film cooling for a real engine has to combine heat transfer with film cooling effect. In this paper, the overall effectiveness of film cooling, combining results from measurements of the adiabatic film cooling effectiveness and the local heat transfer coefficient are shown. The tests comprise the analysis of the effect of different outlet Mach and Reynolds numbers at engine relevant values and film cooling ratio. A new parameter is introduced which allows for the evaluation of the effect of film cooling accounting at the same time for the change of local heat transfer coefficient. To the authors’ opinion this parameter allows a better, physically based assessment than the strategy using the so-called heat flux ratio. A parameter study is carried out in order to benchmark the effect of changes of the blade design.


Author(s):  
Ian S. Gartshore ◽  
Marthe Salcudean ◽  
Y. Barnea ◽  
K. Zhang ◽  
F. Aghadsi

Experiments have been conducted on a large wind tunnel model of the leading edge region of a turbine blade. The model had a semi-circular leading edge in which four rows of holes were symmetrically placed about the stagnation line, two at ±15° and two at ±44°. Air and alternatively CO2 were injected from the coolant holes after contamination with a known small percentage of propane. Using a flame ionization detector and the mass transfer analogy, the film cooling effectiveness was measured at various overall mass flow ratios and at various streamwise locations for each coolant type. The division of coolant flow rate from the two rows of holes was found to be more unequal for CO2 than for air, an effect which is predicted from a simple analysis of the coolant/free stream interaction and the hole discharge coefficient. This has practical implications for actual turbine operation since earlier cut-off of the coolant from the front row of holes, due to density differences, could have disastrous effects on the blade. This effect also further complicates any attempt to identify overall trends of coolant density on performance. It is not possible to conclude that air or CO2 coolant has a higher film cooling effectiveness, although, in general, air appears better close to the first row of holes, and CO2 better at some distance downstream of both rows. Based on the measurements, the effects of mass flow ratio, momentum flux ratio, relative hole placement in each row, and spanwise versus streamwise injection are discussed in the paper.


2014 ◽  
Vol 521 ◽  
pp. 104-107
Author(s):  
Ling Zhang ◽  
Quan Heng Jin ◽  
Da Fei Guo

The Realizable k-ε turbulence model was performed to investigate the film cooling effectiveness with different blowing ratio 1,1.5,2 and different density ratio 1,1.5,2.The results show that, cooling effectiveness increases with the augment of blowing ratio. On the pressure side, cooling effectiveness increases with the augment of density ratio. On the suction side, with higher density ratio the leading edge cooling increases, the middle section reduces, and the trailing edge cooling effectiveness increases first decreases.


Sign in / Sign up

Export Citation Format

Share Document