Heat Transfer and Film Cooling of Blade Tips and Endwalls

2011 ◽  
Vol 134 (4) ◽  
Author(s):  
S. Naik ◽  
C. Georgakis ◽  
T. Hofer ◽  
D. Lengani

This paper investigates the flow, heat transfer, and film cooling effectiveness of advanced high pressure turbine blade tips and endwalls. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with leading edge and trailing edge cutouts. Both blade tip configurations have pressure side film cooling and cooling air extraction through dust holes, which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavy-duty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9×105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aerothermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the midchord region. However, on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall.

Author(s):  
S. Naik ◽  
C. Georgakis ◽  
T. Hofer ◽  
D. Lengani

This paper investigates the flow, heat transfer and film cooling effectiveness of advanced high-pressure turbine blade tips and endwall. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with a leading edge and trailing edge cut-out. Both blade tip configurations have pressure side film cooling, and cooling air extraction through dust holes which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavy-duty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9 × 105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aero-thermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although, the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the mid-chord region. However on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall.


Author(s):  
Joao Vieira ◽  
John Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

The detailed distributions of heat transfer coefficient and film cooling effectiveness on a gas turbine blade tip were measured using a hue detection based transient liquid crystal technique. Tests were performed on a five-bladed linear cascade with blow down facility. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on cascade exit velocity and axial chord length was 1.1 × 106 and the total turning angle of the blade was 97.7°. The overall pressure ratio was 1.32 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. The blade model was equipped with a single row of film cooling holes at both the tip portion along the camber line and near the tip region of the pressure-side. All measurements were made at the three different tip gap clearances of 1%, 1.5%, and 2.5% of blade span and the three blowing ratios of 0.5, 1.0, and 2.0. Results showed that, in general, heat transfer coefficient and film effectiveness increased with increasing tip gap clearance. As blowing ratio increased, heat transfer coefficient decreased, while film effectiveness increased. Results also showed that adding pressure-side coolant injection would further decrease blade tip heat transfer coefficient but increase film effectiveness.


Author(s):  
Sanga Lee ◽  
Dong-Ho Rhee ◽  
Kwanjung Yee

In spite of a myriad of researches on the optimal shape of film cooling holes, only a few attempts have been made to optimize the hole arrangement for film cooling so far. Moreover, although the general scale of film cooling hole is so small that manufacturing tolerance has substantial effects on the cooling performance of turbine, the researches on this issue are even scarcer. If it is possible to obtain optimal hole arrangement which not only improve the film cooling performance but also is robust to the manufacturing tolerance, then overall cooling performance of a turbine would become more reliable and useful from the practical point of view. To this end, the present study proposed a robust design optimization procedure which takes the manufacturing uncertainties into account. The procedure was subsequently applied to the film cooling holes on high pressure turbine nozzle pressure side to obtain the robust array shape under the uncertainty of the manufacturing tolerance. First, the array of the holes was parameterized by 5 design variables using the newly suggested shape functions, and 2 representative factors were considered for the manufacturing tolerance of the film cooling hole. Probabilistic process that consists of Kriging surrogate model and Monte Carlo Simulation with descriptive sampling method was coupled with the design optimization process using Genetic Algorithm. Through this, film cooling hole array which shows the high performance, yet robust to the manufacturing tolerance was obtained, and the effects of the manufacturing tolerance on the cooling performance was carefully investigated. As a result, the region where the film cooling effectiveness is noticeable, as well as the maximum width of the variation of the film cooling effectiveness were reduced through optimization, and it is also confirmed that the tolerance of the holes near the leading edge is more influential to the cooling performance because the film cooling effectiveness is more sensitive to the manufacturing tolerance of the leading edge than that of the trailing edge.


Author(s):  
K. Lu ◽  
M. T. Schobeiri ◽  
J. C. Han

This paper numerically investigates the aerodynamics and film cooling effectiveness of high pressure turbine blade tips. Two different rotor blade tip configurations have been studied: the plane tip with tip hole cooling and the squealer tip with tip hole cooling. The geometry of the blades is determined based on the blade profiles within the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. Seven perpendicular holes along the camber line are used for the tip hole cooling. The clearance between the blade tip and casing is 1.0% of the blade span. For each blade tip configuration, the coolant is ejected through the cooling holes under blowing ratios of M = 0.5, 1.0 and 1.5. In this paper, a comparison between the plane tip and the squealer tip has been presented. The detailed flow structures and film cooling effectiveness are discussed.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Zhihong Gao ◽  
Diganta Narzary ◽  
Shantanu Mhetras ◽  
Je-Chin Han

The influence of incidence angle on film-cooling effectiveness is studied for a cutback squealer blade tip. Three incidence angles are investigated −0 deg at design condition and ±5 deg at off-design conditions. Based on mass transfer analogy, the film-cooling effectiveness is measured with pressure sensitive paint techniques. The film-cooling effectiveness distribution on the pressure side near tip region, squealer cavity floor, and squealer rim tip is presented for the three incidence angles at varying blowing ratios. The average blowing ratio is controlled to be 0.5, 1.0, 1.5, and 2.0. One row of shaped holes is provided along the pressure side just below the tip; two rows of cylindrical film-cooling holes are arranged on the blade tip in such a way that one row is offset to the suction side profile and the other row is along the camber line. The pressure side squealer rim wall is cut near the trailing edge to allow the accumulated coolant in the cavity to escape and cool the tip trailing edge. The internal coolant-supply passages of the squealer tipped blade are modeled similar to those in the GE-E3 rotor blade. Test is done in a five-blade linear cascade in a blow-down facility with a tip gap clearance of 1.5% of the blade span. The Mach number and turbulence intensity level at the cascade inlet were 0.23 and 9.7%, respectively. It is observed that the incidence angle affects the coolant jet direction on the pressure side near tip region and the blade tip. The film-cooling effectiveness distribution is also altered. The peak of laterally averaged effectiveness is shifted upstream or downstream depending on the off-design incidence angle. The film cooling effectiveness inside the tip cavity can increase by 25% with the positive incidence angle. However, in general, the overall area-averaged film-cooling effectiveness is not significantly changed by the incidence angles in the range of study.


Author(s):  
Jin Young Jeong ◽  
Woobin Kim ◽  
Jae Su Kwak ◽  
Jung Shin Park

Leakage flow between the rotating turbine blade tip and the fixed casing causes high heat loads and thermal stress on the tip and near the tip region. For this study, new squealer tips called partial cavity tips, which combine the advantages of plane and squealer tips, were suggested, and the effects of the cavity shape on the tip heat transfer coefficient and film cooling effectiveness were investigated experimentally in a low speed linear cascade. The suggested blade tips had a flat surface near the leading edge and a squealer cavity from the mid-chord to trailing edge region to achieve the advantages of both blade tip types. The heat transfer coefficient was measured via the 1-D transient heat transfer technique using an IR camera, and the film cooling effectiveness was obtained via the pressure sensitive paint (PSP) technique. Results showed that the heat transfer coefficient and film cooling effectiveness on the partial cavity tips strongly depended on the cavity shape. Near the leading edge, the heat transfer coefficients for the partial cavity tip cases were lower than that for the squealer tip case. However, the heat transfer coefficient on the cavity surface was higher for the partial cavity tip cases. The D10 tip showed a similar distribution of film cooling effectiveness to that of the PLN tip near the leading edge and the DSS tip near the mid-chord region. However, the overall averaged film cooling effectiveness of the DSS tip was higher than that of the D10 tip.


2021 ◽  
pp. 1-12
Author(s):  
Joao Vieira ◽  
John D Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


Author(s):  
JeongJu Kim ◽  
Wonjik Seo ◽  
Minho Bang ◽  
Seon Ho Kim ◽  
Seok Min Choi ◽  
...  

Film cooling effectiveness and heat transfer were measured in squealer tip configurations on the blade tip surface. Three different shelf squealer tip geometries were studied: conventional, vertical, and inclined. The experiment was carried out in a wind tunnel with an inlet mainstream Reynolds number, based on the axial chord length of the blade, of 140,000. The experiments were conducted in five blades in linear cascade with an averaged turbulence intensity of 8.5%. The film cooling effectiveness and heat transfer coefficient on the tip surface were obtained using the transient IR thermography technique. For the pressure side film cooling holes, averaging blowing ratios (M) of 1.0 and 2.0 were set. The results showed the film cooling effectiveness distributions on the tip surface. Owing to the mainstream, the cooling effect appeared after x/Cx = 0.15 and the film cooling effectiveness tended to increase toward downstream of the trailing edge. Additionally, the heat transfer distributions were investigated regarding the film cooling holes. In the presence of film cooling holes, the heat transfer distribution had more uniformity than without them on the pressure side. As the blowing ratio increased from 1 to 2, the heat transfer was decreased on the tip surface. The heat transfer ratio represented the change of heat transfer distribution with and without film cooling holes. Those of results were compared in three squealer tip geometries. The overall area-averaged net heat flux reduction (NHFR) levels on the tip surface were enhanced as the blowing ratio increased. The NHFR of the shelf squealer tip configurations was better than that with the conventional squealer tip.


Sign in / Sign up

Export Citation Format

Share Document