Predicting Coherency Loss of $$ \gamma^{\prime\prime} $$ γ ″ Precipitates in IN718 Superalloy

2016 ◽  
Vol 47 (6) ◽  
pp. 3235-3247 ◽  
Author(s):  
Yanzhou Ji ◽  
Yucun Lou ◽  
Meng Qu ◽  
John David Rowatt ◽  
Fan Zhang ◽  
...  
Author(s):  
R. A. Ricks ◽  
Angus J. Porter

During a recent investigation concerning the growth of γ' precipitates in nickel-base superalloys it was observed that the sign of the lattice mismatch between the coherent particles and the matrix (γ) was important in determining the ease with which matrix dislocations could be incorporated into the interface to relieve coherency strains. Thus alloys with a negative misfit (ie. the γ' lattice parameter was smaller than the matrix) could lose coherency easily and γ/γ' interfaces would exhibit regularly spaced networks of dislocations, as shown in figure 1 for the case of Nimonic 115 (misfit = -0.15%). In contrast, γ' particles in alloys with a positive misfit could grow to a large size and not show any such dislocation arrangements in the interface, thus indicating that coherency had not been lost. Figure 2 depicts a large γ' precipitate in Nimonic 80A (misfit = +0.32%) showing few interfacial dislocations.


2019 ◽  
Vol 61 (7) ◽  
pp. 609-617 ◽  
Author(s):  
Arpaporn Nararak ◽  
Panyawat Wangyao ◽  
Tanaporn Rojhirunsakool ◽  
Gobboon Lothongkum

Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract INCONEL alloy 718SPF is an age-hardenable austenitic material whose strength is largely dependent on the precipitation of a gamma prime phase following heat treatment. The base alloy, however, possesses two-essential characteristics for super-plastic forming; grain size stability over time and temperature; and a combination of low flow stress and significant ductility. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on low and high temperature performance. Filing Code: Ni-471. Producer or source: Inco Alloys International Inc.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tian-Le Cheng ◽  
You-Hai Wen

AbstractA phase-field model is proposed to simulate coherency loss coupled with microstructure evolution. A special field variable is employed to describe the degree of coherency loss of each particle and its evolution is governed by a Ginzburg-Landau type kinetic equation. For the sake of computational efficiency, a flood-fill algorithm is introduced that can drastically reduce the required number of field variables, which allows the model to efficiently simulate a large number of particles sufficient for characterizing their statistical features during Ostwald ripening. The model can incorporate size dependence of coherency loss, metastability of coherent particles, and effectively incorporate the underlying mechanisms of coherency loss by introducing a so-called differential energy criterion. The model is applied to simulate coarsening of Al3Sc precipitates in aluminum alloy and comprehensively compared with experiments. Our results clearly show how the particle size distribution is changed during coherency loss and affects the coarsening rate.


2012 ◽  
Vol 53 (11) ◽  
pp. 1922-1928 ◽  
Author(s):  
Lin Zhang ◽  
Xuanhui Qu ◽  
Mingli Qin ◽  
Rafi-ud-din ◽  
Xinbo He ◽  
...  

1994 ◽  
Vol 80 (4) ◽  
pp. 348-352 ◽  
Author(s):  
Kiyoshi KUSABIRAKI ◽  
Itaru HAYAKAWA ◽  
Shuuichi IKEUCHI ◽  
Takayuki OOKA
Keyword(s):  

2001 ◽  
Vol 699 ◽  
Author(s):  
Xiaodong Zou ◽  
Tariq Makram ◽  
Rosario A. Gerhardt

AbstractWaspaloy is a nickel base super-alloy used in aircraft engines. When this alloy is placed in service, it is subjected to long term exposure at high temperatures, which can cause the reinforcing gamma prime precipitate population to fluctuate and thus affect its structural integrity. The population fluctuates as a result of coarsening, dissolution or re-precipitation. Samples exposed to 1200° F for times ranging from 0 to 12626 hours were characterized using impedance spectroscopy, microhardness measurements, x-ray diffraction and quantitative stereology. Two important parameters were derived from the impedance measurements: (1) the imaginary admittance peak magnitude (Ymax) and (2) the associated relaxation frequency (fmax). As the distribution, shape and size of the precipitates change with exposure time, these parameters were also found to vary. In addition to the changes in precipitate geometry, lattice constant changes detected by analyzing x-ray diffraction data suggest that there are compositional shifts in the matrix as well as the gamma prime precipitates. Furthermore, the preferred orientation of the precipitates can also be seen to change with exposure time. These changes in composition, size and shape as a function of thermal exposure time are accompanied by changes in the volume fractions of primary and secondary gamma prime particles present. Using effective medium models, it is possible to predict that the measured properties are related to the gamma prime population. The grain boundary carbides do not appear to play any role at the conditions presented.


Sign in / Sign up

Export Citation Format

Share Document